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The Fibonacci numbers are defined, as usual9 by the recurrence 

F0 = 0, F1 = 1, Fk = Fk_x +Fk.z, k> 1. 

The Fibonacci tree of order k, denoted Tk, can be constructed inductively 

as follows: If k = 0 or k = 1, the tree is simply the root 0. If k > 15 the 
root is Fk ; the left subtree is Tjc_1; and the right subtree is Tk_2 with all 

node numbers increased by Fk . TG is shown in Figure 1. For an elegant role 

of the node numbers In the Fibonacci search algorithm3 the reader is referred 

to [5]. 

Fibonacci trees have been studied in detail by Horibe [2], [3]. The aim of 

this note is to present some additional considerations on Fibonacci tree codes 

and to explore the relationships existing between the codes and the Zeckendorf 
representation of integers. 

Figure 1. The Fibonacci Tree of Order 6, Ts 
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A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS 

Recall that each integer N, 0 < N < Fk + 1* has the following unique Zecken-

dorf representation in terms of Fibonacci numbers [6]: 

N = CL2F2 + a3F3 + a ^ + ••• + akFk, where a^ e {0, 1} and c^a 0. 

Let us write this as &kak_1ak_2 . .. a3a2. The Zeckendorf representation of 

an integer then provides a binary sequence, called a Fibonacci sequence, that 

does not contain two consecutive ones, and the number of Fibonacci sequences 

of length k - 1 is exactly F, « 

The Zeckendorf representation of integers perserves the lexicographic or-

dering based on 0 < 1 (see [1]). 

A tree code is the code obtained by labeling each branch of a tree with a 

code symbol and representing each terminal node with the path of labels from 

the root to it. We stress that tree codes are prefix codes (i.e., no codeword 

is the beginning of any other codeword) and have a natural encoding and decod-

ing. Moreover, tree codes preserve the order structure of the encoded set in 

the sense that, if x precedes y, the codeword for x lexicographically precedes 

the codeword for y. 

In the sequel, we use 0 for each left branch and 1 for each right branch 

in a binary tree. The Fibonacci code, denoted Ck , is the binary code obtained 

in this way from Tk . For example, Cs is shown in the following table. 

1 ° 
1 1 
1 2 
3 

1 4 

00000 

00001 

0001 , 

0010 

0011 

5 

6 

7 

8 

9 

0100 

0101 

011 

1000 

1001 

10 

11 

12 

101 1 
110 

111 1 

The first result of this note is the determination of the asymptotic pro-

portions of zeros and ones in the Fibonacci codes. 

Let N^ and Nk denote the total number of 0's and lfs in Ck, respectively, 

and let Nk = Nk + Nk denote the total number of symbols. For example, /l/°  = 30 

and Nl = 20. Put p = lim(tfP/JV7 ) and q = 1 - p = lim(^J/Np) . We will show the 

following 

1 1 "rc+l . 1 + /5 
Theorem 1 : p = -r and q = 1 - -r, where $ = lim — - — is the golden rat%o ~ . 

Proof: From the inductive construction of the Fibonacci tree and the fact that 

Tk has Fk+1 terminal nodes, one has the following equations: 

N, Fk+i + Nk-i + h-2l 
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These equations, applied recursively, give 

k - l . k - l k - l 
Nk = E Fi Fk . i + 2 . K = E Fi Fk - i + 1 > < = E FtF} 

i = 0 ^ = 0 
& - £ ' 

The refrom one g e t s : N*/Nk = _E ^ V W E ^ ^ _ i + E^ 
i = 0 

/k-l 

i = 0 

k-l 
To evaluate the asymptotic behavior of Z ^i ̂ V - ' + '' w e u s e Binet's formula 

^ = 0 

Fv = — (§k - Tk), where Y = l
 0

 5. 
•5 

We then have 

k-l T /k-l k-l ^ . k-l 

i=0 ^ J \ i = 0 

£$fc + J + ferfc + J _ r j + l l 

k + j _ V r h ^ r ^ - ^ + J 
£ = 0 i = 0 

k - l 

E< 
£ = 0 

}k -i + j-ni 

-K' $ « ? -

- r 
§<? + i 

JL 7> f̂e fcfcfc + J + Q($k). 

/ 5 
-(<&>* - Tk) 

Figure 2. The Uniform Fibonacci Tree of Order 6, U6 

From the above, one finally obtains 

l i m — 
k + ~ ^ 

l i m 
k - > ~ 

k - l 

E ^ F k - £ + l 
* = o 1 

X) FzFk-i + 2 
i = 0 
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The remainder of this note is devoted to exploring relationships between 

the Fibonacci codes and the Zeckendorf representation of integers. In parti-

cular, we show that the Zeckendorf representation of integers can be obtained 

as a variant of the Fibonacci codes by inserting some redundant digits 0. 

To this end9 let us define the uniform Fibonacci tree of order k (denoted 

Uk) as follows: For k < 23 the uniform Fibonacci tree coincides with the Fibo-

nacci tree. If k > 23 the root is Fk; the left subtree is Uk_1; the right sub-

tree has root Fk + F*_1 whose right subtree is empty and whose left subtree is 

Uk_2 with all numbers increased by Fk« 

A uniform Fibonacci tree is the Fibonacci tree with dummy nodes after each 

right branch that force the leaves to be at the same level- The uniform Fibo-

nacci tree can be obtained from the branch labeling of the Fibonacci tree, as 

described in [3]. The relationships between this labeling and the Zeckendorf 

representation of integers have been unnoticed- Figure 2 above shows U&. Some 

properties of Uk are given in the following theorems. 

Theorem 2: Uk has F^ + 2 nodes at level i, 0 < i < & - 1. 

Proof: Theorem 2 is trivially true for k = 1, 2. Suppose it Is true for each 

Ui9 i < k (k > 2) . We prove that it Is true for Uk. 

Let us denote by L(i5 k) the number of nodes that Uk has at level i . The 

construction of Uk implies 

L(0S k) = F23 L(l, k) = F3, 
and 

L(i9 k) = Lii - 1, k - 1) + L{i - 2, k - 2), 2 < i < k - 1. 

By the induction hypothesis, this gives L(£, k) = F£+1 + Ft = Fi + 2
m u 

Corollary 1: Uk is obtained by adding Fk - 1 internal nodes to Tk -

Proof: From Theorem 25 Uk has E^=2F^ = Fk+2 - 2 internal nodes. Since T^ has 

Fk+1 - 1 internal nodes3 we get that Uk has Fk+2 - 2 - Fjc+1 + 1 = ^k ~ ^ addi~ 

tional nodes- • 

Similarly, as was done in [3] for Fibonacci trees, it is possible to clas-

sify terminal nodes of Uk into: 

(R-nodes9 the terminal nodes that are right sons, and 

£-nodes5 the terminal nodes that are left sons. 

Lemma 1: Uk has Fk_1 (R-nodes and Fk £-nodes* 
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Proof: By induction. Trivially true for k = 2, 3. Suppose the lemma is true 

for each uniform Fibonacci tree of order less than k9 k > 3. The definition of 

(R-nodes and <£-nodes implies that the type ((R or «£) determination within each 

of the left and right subtrees of any uniform Fibonacci tree gives the correct 

type determination in the whole tree. Hence, by the construction of Uk and by 

the induction hypothesis, Uk has Fk_2 + Fk_3 (R-nodes and Fk_-L + Fk_2 £-nodes. 

This completes the proof, n 

As was done in [2] for Fibonacci trees, and as Theorem 2 suggests, one can 

construct Uk+1 by properly splitting terminal nodes of Uk. However, the recur-

sive construction for uniform Fibonacci trees is slightly different from that 

described in [2] for Fibonacci trees. This time, all terminal nodes generate 

offsprings. 

Theorem 3- If each (R-node of Uk, k ^ 2, generates only the left node and each 

«£-node generates two nodes, then the resulting tree that has Fk (R-nodes and 

Fk_± + Fk £-nodes is exactly Uk + 1 . 

Proof: By induction. Suppose the theorem is true for each Ui , i < k, k > 3 

(when k = 2, 3, the assertion is easily shown). Uk has, as its left subtree, 

Uk-i w ^ t n Fk_2 (R-nodes and Fk_± £ -nodes. Making terminal nodes of this JJ-k_1 

generate offsprings produces Uk by the induction hypothesis. Similarly, the 

right subtree of Uk has empty right subtree and has Uk_2 as the left subtree. 

Making the Fk_3 (R-nodes and the Fk_2 £-nodes of this Uk_2 generate offsprings 

produces Uk_± by the induction hypothesis. Therefore, making all (R-nodes of 

Uk generate left sons and all £-nodes generate two sons produces U]< + 1 o m 

We now relate the tree code of Uk, the uniform Fibonacci tree code of order 

k (denoted in the sequel by Bk), to the Zeckendorf representation of integers. 

For example, B6 is given by: 

1 °  
1 

2 

3 

4 

00000 

00001 

00010 

00100 

00101 

.5 

6 

i 7 

8 

9 

01000 

01001 

01010 

10000 

10001 

10 

11 

12 

10010 | 

10100 

10101 

Lemma 2: The uniform Fibonacci code of order k is the set of all Fibonacci 

sequences of length k. — 1. 
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Proof: From the construction of the uniform Fibonacci tree, the uniform Fibo-

nacci code does not allow two consecutive l!s in any codeword and contains Fjl + 1 

distinct codewords of length k - 1. The number of Fibonacci sequences of length 

k - 1 is also given by Fk . m 

Theorem k: In a uniform Fibonacci code, the codeword that represents the ter-

minal node i is the Zeckendorf representation of the integer i . 

Proof: From Lemma 2, the uniform Fibonacci tree code of order k is the set of 

Fibonacci sequences of length k - 1 * By definition, they provide the Zeckendorf 

representation of nonnegative integers < ^&+i« Since the Zeckendorf represen-

tation preserves the lexicographic ordering, the assertion is a straightforward 

consequence of the order-preserving property of tree codes, • 

Uniform Fibonacci trees, therefore, provide an efficient pretty mechanism 

for obtaining the Zeckendorf representation of integers. The procedure is: 

Given the -integer i9 0 < i < ̂  + 1, construct the uniform Fibonacci tree 
of order k. The Zeckendorf representation of i is the path of labels 
from the root to terminal node i. 

It is also worthwhile to note that the uniform Fibonacci trees in the set-

ting of the Fibonacci numeration system play a role analogous to that of the 

complete binary trees in the setting of the binary numeration system: 

The number of nodes at each level is given by a Fibonacci number (power 
of 2, in the binary case); 
The path of labels to a terminal node is the Zeckendorf representation 
{the binary representation, in the binary case). 

The last result is the determination of the number Nk of l'.s and the num-

ber Nk of 0?s in Bk. With the same notation of Theorem 1, we have 

Theorem 5: fl\ = N^; l£ = N°k + n\ - Fk_l9 k > 2. 

Proof: The first part Is immediate from the construction of trees Tk and Uk . 

The second part can be proved by induction. Suppose Theorem 5 is true for each 

uniform Fibonacci tree of order less than k, k > 3 (when k = 2, 3, the asser-

tion is trivially true). By the construction of Uk, one has the equation: 

N°k = (Fk +^° -i) + (h-i + ^ - 2 ) ' 

By the induction hypothesis, this gives 

W l = Fk + Vl + K-l + ^ -1 - h-2 + K-2 + Nl-2 - h-3-
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S i n c e N% = Fk + N°_1 + IF®_2 and B\ = F f e _ i + ^ _ x + tf*_2 ( s e e Theorem 1) , 

the assertion is true- ® 

Theorem 5 allows immediate computation of the asymptotic proportion of l's 

(and 0ss) in Fibonacci sequences (see [4]). Indeed, denoting by p, q and p, q, 
respectively, the asymptotic proportions of 0!s and lfs in Ck and Bk, and re-

calling Theorem 1 and its proof, one obtains 

- , - - , . * - , . fc % $ ~ 1 5 - / 5 
<7 = 1 - p = l i m = l i m = ^—; = TT^ T = v~p: * 
q V *"Nk

 k^Nk^Nl-Fk.1 l + q 2 ® ~ l 1 0 
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