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1. The classical cuboid has integral edges and face diagonals. We require 

integer solutions of the Diophantine equations: 

x2 + y2 = u2, x2 + z2 = v2 , and y2 + z2 = 0)2. (1.1) 

The first parametric solution was given by Saunderson (Dickson [l],p. 497) 

and subsequent two-parameter solutions have been given by a number of writers; 

a listing of these authors can be found in Kraitchik [2]. The general solution 

of equations (1.1) is unknown. In this paper a method is given which leads to 

an infinity of two-parameter solutions which are of ever-increasing degree and 

complexity. 

2. A solution of (1.1) is given by 

x = (a2 - d2)(c2 - b2) (2.1) 

y = 2ad(c2 - b2) 

2 , 2-/2/ 2 , 2abd jz\ ( 2 , 2aad ,2\ z = ko^b \a + - d ) [a + —r— - d ) , 

because 

x2 + y2 = ((o2 - b2)(a2 + d2))2 

x2 + z2 = ((a2 - d2)(b2 + c2) + kabcd)2 

y2 + z2 = h{ad{b2 + c2) + ba(a2 - d2))2 » 

We see from these equations that a cuboid with two integral edges and integral 

face diagonals has a four-parameter solution. The problem here is to make z 

rational. 

Putting ajd - w and b/c = D (say), where w and D are rationals5 we have 

z2 = kc2b2dh{w2 + 2Du) - l)(w2 + jjW - l) . (2.2) 

If we multiply the quadratics and put A - D + l/D9 we require rational solu-

tions of 

wh + 2Aw* + 2w2 - 2Aw + 1 - t2. (2.3) 
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We wish to determine solutions of (2.3) in the form w = w(A). If (2.3) has 

a rational solution w = wQ9 then it also has a rational solution 

1 
W = - — . 

w0 

But this will just interchange a and d and will not effect the solution 

We can equate (2.3) to the square of a quadratic in w in the usual way, to 

show that there is a rational solution 

This gives the classical solution of Saunderson: 

x = (c2 - b2)((b2 + c2)2 - I6b2c2) (2.5) 

y = 8bc(ch - bh) 

z = 2bc(3(b2 + c2)2 - 16b2c2). 

Equation (2.2) has another simple solution. Putting w = 1/2D9 we see that 

W2 + 2Dw - 1 is square, and we require 

_5_ 
2 1 = •. 

This has the standard rational solution 

n a2 + qg - B2 

D = and • = 
a2 + 32 

a2 - 4ag - B2 V 
,2(q2 + qB - B 2 ) / ' 

-, a = a2 + B2
3 d = = 2(q2 + qB -- B 2 ) , 

which gives 

a = a2 + B2
9 b •= a2 + qB -

and we have the solution: 

x = aB(a2 - B2)(3q - B)(3B + a)(2a + B)(2B - a) (2.6) 

y = 4qB(a2 + B2)(2a•+ B)(2B - a) (a2 + qB - B2) 
z = 2(q2 + B2)2(a2 + qB - B2)(a2 - 4qB - B2). 

3. To determine further solutions of (2.3), we can put w = n + wQ, where 

w\ + 2Aw\ + 2w\ - 2AwQ + 1 = t2, and write 

nk+ (4w0 + 2A)n3 + (6w2
Q + 6AwQ + 2)n2 + (hw\ + 6Aw2

Q + 4wQ - 2A)n + t\ 
' o 

R V 7 - I - •/, = (Cn2 + Bn + t,)2 ( s a y ) , 

T h e r e f o r e , 

2BtQ = 4^Q + 6Aw2
Q + 4u0 - 24 

+ 2CtQ = 6w2 + 6/kJ0 + 2 
a n d 23C - 4 ^ . - 2 . 4 

w= _____ + WQB 
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These equations give: 

Aw* + 12W8
Q + 12Aw7

Q + 32w6
0 + 30Aw5

Q + 24w£ - 36Aws
Q + 9Aw0 - 4 

w = . (3.1) 
hw\ + 9Aw\ - 36Aw\ - 2hw\ + 30Aw] - 32w3

Q + \2Aw\ - I2w0 + A 

If we put wQ = .4/4, then the next solution generated is 

A10 + 240,4 8 + 9728,4 6 - 1228804" + 58982442 - 1048576 
w = . 

SA(5A8 - 288Ae + 307244 + 819242 - 65536) 

Putting D = 2 = fc/c, we obtain 4 = 5/2 and w = 602697401/880248720. Hence, we 

have a cuboid with i = 2 , c = l , a = 602697401, and d = 880248720. 

Equation (3.1) will generate an infinity of rational solutions w9 and each 

such solution gives a two-parameter solution of equations (1.1). It is evident 

that these solutions increase very rapidly in degree and complexity. The solu-

tions do not necessarily give independent parametric formulas. If we put wQ = 
A + 4 ls then w - , _ /, which, again, gives Saunderson's solution (2.5). 

k. It is seen that the solution 

• - * - * ( » • * ) 
makes both quadratics, w + 2Dw - 1 and W2 + JJW - 1, simultaneously square. 
We will now consider this further. 

We have 

,2 
w 

a. OT-v, i f®2 + 2DoL - l \ 2 .c a2 + 1 ,, 1N 
+ 2Db) ~ l = I 2a + 2£ ) lf W = 2oTT-2^ (4'X> 

and 

23 + 
^z + -w - 1 = I 1 if w = 1, (4.2) 

D 

where a and 3 are arbitrary rationals such that w is finite. Equating (4.1) 

and (4.2), we require rationals a and 3 such that 

a2 + 1 B2 + 1 
2a + 2D 2 

P D 

(4.3) 

If a = 3, then D = 1, which is trivial. If a = -3, then we again obtain the 

classical solution (2.5). Thus, we have 

(a + 2)(32 + 1) = (3 + ̂ )(a2 + 1). 

Put a + D = z(3 + ̂ ) and 32 + 1 = -̂ (a2 + 1) for some rational K: 
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.-. &2(K2 - K) + Q{^- - 2KD) + (|£ - 3K + D2 + l\ =0 

••• e - (*D - £ ± (^_|!MI _ 4z2 + (1 + D^x/2yK, _ x. 
We require 

K3 - 4ZZ + (1 + DZ)K = a. (4.4) 

2 _L i \2 
Multiply equation (4.4) by UL+±\ a n d p u t

 ( P + 1 ) Z = w (say), 

m -km + 1 — 1 772 = • . 

Let us put, as before, A = D + 1/Z), then we have 

w3 - 4m2 + A2m = t2. (4.5) 

Equation (4.5) is an elliptic curve and has the obvious rational solution 

777 = 4. We can see, by direct substitution, that if m = m is a rational solu-

tion then 777 = A2/mQ is also a rational solution. Employing the same technique 

as before, we can put m = n + 77?0 and consider 

n3 + n2(37772 - 4) + n(3rn0 - SmQ + A2) + t\ = (Bn + tQ)2, ( 4 . 6 ) 

which g i v e s 
(m2 - , 4 2 ) 2 

( 4 . 7 ) 
4 (777g - 47T72 + y42777Q) 

The right-hand side of (4.7) is unchanged if 7770 is replaced by A2/mQ. We 

can therefore generate two sequences of solutions starting with 77? = 4. Thus, 

we have 

777n = 4 and 
A2 

(16 - ^ 2 ) 2 , 164" 
— and 

1642 (16 - A2)2 

((16 - A2)1* - 256A6)2 , 644* U 2 - 16)2(Ak + 644 2 - 256) 
a n d - — • - - • - — - - • — • - — • in 2 

6442(42 - l6)2(Ah + 6442 - 256) ((16 - A2)1* - 25646)2 

etc. 

Using these values of 777 we can determine 3? and hence a, as a rational function 

of D. This will then give w as a rational function of D and will lead to a 
two-parameter solution. For 777 = 4, we have solution (2.5). For 777 = 42/4, we 

have 
Dh 4- 8D2 - 1 

a = — and 3 
2D(DZ - 3) D(D2 - 3) 
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(D2 + l)(Dh + 18DZ + 1) 
with w 

M){3Bh - 10D2 + 3) 

With this values for w, we have 

2j.07, , (5De + 27Dh - 41£2 + 1 w + 2Dw - 1 = ( 
V UD(3Dh - 10D2 + 3) 

and 
2 l 2 , (D6 - 41P4 + 27D2 + 5\2 

V 4Z)(3Z)4 - 10D2 + 3) / 

Putting D = b/c and removing common factors gives the solution: 

x = (c2 - b2)((b2 + o2)2{Jjh + 18&2c?2 + c1*)2 (4.8) 

- 16£2e2(3£4 - I0b2c2 + 3 c V ) 

z/ = 8 t e ( ^ - Z ? 4 ) ^ + I8b2c2 + ^)(3Z/ - 10Z?2c2 + 3ch) 

z = 2bc(bs - 412? V + 27£2cl+ + 5c6)(5£6 + 272? V - 41&V + c6) 

Putting b = 29 c = 1 gives 

a; = 570843, y = 234960, 2 = 1128524; 

and putting b = 3, e = 1 gives 

x = 153076, y = 570960, z = 600357. 

Neither of these solutions is in Lai and Blundonfs [3] computer-generated list. 

( ~\ r /]2\2 

For m1 = — 1 r . o—— we have, if D = 2 5 that 
1 16A 
= -509 R = -1139 -260681 

a 40 9 P 78 s ^ 34320 ; 

thus, a = -260681, & = 2, c = 1, and d = 34320. This gives 

x = 3(295001)(226361) 
z/ = 6(260681) (34320) = 2 5 - 32 - 5 • 11 • 13 • 29 • 89 • 101 

z = 4(176041)(240479). 

We can also determine another set of solutions of 4.5 by writing 

n3 + n2(3mQ - 4) + n(3m2
Q - 8mQ + A2) + t\ = (Cn2 + 5n + t Q ) 2 . 

This gives 

3/T?^ - 16/?^ + 6^2m2 - Ah 
(4.9) 

Equation (4.9) will again generate two infinite sets of two-parameter formulas. 
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5- It is clear that the sequences of parametric solutions given in this 

paper by (3.1), (4.7), and (4.9) rapidly lead to solutions of high degree with 

"large" values for x9 y9 and z. But we know from Lai and Blundon's list [3] 

that there are many smaller solutions, and so there must be other parametric 

solutions of smaller degree, like (2.5) and (2.6). Some other solutions of 

degree 8 or more are given in Kraitchik [2, Ch. 5]. For each such parametric 

solution x9 y, and 2, we have the derived solution given by X = yz , Y = xz, and 

Z = xy. This effectively doubles the number of formulas. Whether there are 

solutions of (2.3) which give these smaller solutions remains open. It seems 

intuitively clear that the number of parametric solutions of given degree is 

finite, but that this number increases with the degree. Unfortunately, we have 

no idea what this rate of increase might be. 

6. Finally, we see, from (2.1), that 

2 2 2 4 lh^2fD2 + 1 \ 2 / 4 ' • SW3 ' , o 2 SW , A 

Ff1) FiR 
Therefore, putting D + l/D = A as before, we see that x2 + y + z is square if 

wh + jw3 + 2w2 - jw + 1 = n. 

This equation is similar to (2.3). If we change A into h/A9 we can deduce ra-

tional solutions using (3.1), starting with w = l/A. Therefore, we can gener-

ate a sequence of two-parameter formulas for a cuboid with edges x, y, and z , 

such that x2 + y2, x2 + z2, y2 + z2, and x2 + y2 + z2 are all square. 

A perfect cuboid would exist if we could find rational W and A = D + -̂  ̂  2, 

where D is also rational, such that 

w + 2Aw3 + 2w2 - 2Aw + 1 and wh + -w3 + 2w2 - -rw + 1 A " • A 

are both square, or if we could determine a solution w = w(A) satisfying both 

quartics. This, of course, seems unlikely, but the problem of perfect cuboids 

remains stubbornly open. 
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