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1. Introduction 

A triple (x, y, z) of natural numbers is called a Pythagorean Triangle if 
x, y9 z satisfy the Pythagorean equation 

x2 + y2 = z2. 

The triple (x9 y, z) is a Primitive Pythagorean Triangle (PPT) if x, y, z have 
no common factor greater than 1. If JJ is assumed to be odd, the set of PPT's 
can be generated by the set of pairs of natural numbers (u, v) satisfying 

u > V > 0, (u, v) = 1, u + V = 1 (mod 2), (1) 

the well-known generating formula being 

(x9 y9 z) = (u2 - v2, 2uy, u2 + t>2). 

The pair (u9 v) is called the generator of the PPT (#, y, z). 
In terms of the generator^ the perimeter S of (i, z/, s) , S = # + 2/ + z, may 

be expressed as 

5 = 2u(u + y). 

Denote by H the set of all such perimeters. Let Hk be the subset of H defined 
by the relation: S e Hk if 5 is the perimeter of exactly k PPT!s. 

It is not difficult to show that Hi is an infinite set9 i.e., there is an 
infinite set of PPT*s each one of which has a perimeter not shared by any other 
PPT. The surprising fact that E^ is also an infinite set is proved in [1]. It 
is the main purpose of this paper to prove that Hk is an infinite set for any 
k9 k > 3; see Proposition 3.3 below. The proof may appear to be constructive, 
but it is ultimately seen to depend on a known existential Theorem of malytic 
number theory, the so-called modern version of Bertrand!s postulate. 

Necessary conditions for the construction of k PPT!s with equal perimeters 
are given in the next section. That the conditions can be met is shoi n in the 
proof of Proposition 3.3. 

2. A Constructive Device 

Let us first construct k different generators (u, v) of PPT?s with equal 
perimeters. 

*This paper is the final version of two papers submitted for publication by Leon Bernstein before 
he died on March 12, 1984, of a cerebral hemorrhage. It benefitted from the advice of a number of 
anonymous referees. 
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Proposition 2.1: Let Bl9 B2, . . . , Bk be k ( k > 3) odd positive integers, pairwise 
relatively prime, Bl < Bz < ''' < Bk, and 

5* < 5 x / 2 . (2) 

Let 
k 

Ak = Yl B^ and ut = i4fe/5t for t G f, f = {1, 2, . . . , k}. 
i = 1 

Assume there exists an odd positive integer Pk satisfying the two conditions 

(Pk, ut) = 1, t e T, (3) 

5X
 < Pk < 2 Z^ ' ( 4 ) 

If vt = Pfc#t - ut9 t € T, then the pairs (ut, Vt) are generators of fcPPT?s hav-
ing equal perimeters S, S = 2P^lfe<, 

Proof: We show first that (ut, vt) is the generator of a PPT for each t e T9 
i.e., that (ut, Vt) satisfies (1). From the definitions of ut3 Vt, it follows 
that 

ul > u2 > """ > Uk anc^ Vl < V2 < * " " < yfe* ^ 

Since by (4), 

vl m PkBl - u l = PkBl ~ B2Bl ••• Bk > 0, 

it follows from (5) that vt > 0 for t e TB Moreover, it follows from (5) that 
ut > Vt9 t E T9 provided uk > Vk. And this is a consequence of (4): 

uk ~ vk = 2uk ~ PkBk > WklBJ ~ 1BlB2 ••• \ - l = °-

Thus, ut > v t , t e T. 
Next, (ut, Vt) = 1 if and only if (uts ut + vt) = (Ak/Bt, Pj<Bt) = 1, which 

is true since, by assumption, (ut9 Pk) = 1 and the 5,;?s are pairwise relatively 
prime. 

Since ut + Vt is odd, ut and Vt must have opposite parity, i.e., ut + Vt = 
1 (mod 2). This concludes the proof that (ut, V t) satisfies (1) for each t e T. 

Finally, since 5 = 2ut(ut + Vt) = 2PkAk is independent of t, the k PPTfs 
generated by (ut, Vt), t e T> have equal perimeters. 

3. Infinity of Hk 

The main argument of this section rests on the following existential 
result; see [2], page 371. 

Theorem 3.1: For every positive number e there exists a number £ such that for 
each x, x > £, there is a pr ime number between x and (1 + z}x. (It will be used 
to prove the following proposition which has a certain interest in itself.) 

Proposition 3.2: Let k > 3 and let 6 > 0. Then there is a number £ such that for 
every y, y > £, there are fc consecutive primes B^9 B^$ ..., 5, and a prime P, 
satisfying the inequalities 
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y < Bl < B2 < ••• < Bk < /l + 6z/, 

AJ * < P < (1 + 6)_L^ *zl 

Proof: Let ex be a given number such that 0 < £]_ < /l + 6 - 1. By Theorem 3.1, 
there is a number £]_ such that for every x > £i , there are at least /c consecu-
tive primes Z^, B2i . .., 5^ in the open interval (x, (1 + Z\)x) . Let 

1 + 6 1 
(1 + ei) 2 

and take ?2 s o large that for each x> x > 52> there is at least one prime 
number in the interval {x, (1 + z)x). 

Let ^ = max(^ 15 £2)- Then for every y, y > £, we have that the interval 
(y9 (1 + e 1 )2/) contains fe consecutive primes, 

y < Bx < Bz < ••• < Bk < (1 + El)2/, (6) 

and the interval (2/, (1 + e)y) contains a prime number Pk , 

f 2/ < P* < (1 + e)j/. (7) 

We show next that the interval 

[X, Y] 
?2B, . .. Bj, B-\B? ••• B\,-\ 

Sfc 

contains Pk . 0n_ the one hand, we know from (7) that [J, (1 4- e)Z] contains at 
least the prime Pk , since for fc > 3, Z = 5253 ... Bk/Bi > B2 and B2 > y by (6). 
On the other hand, [J, (1 + e)X] is a subinterval of [X, Y] if we show (1 + e)X 
< Y. This last inequality is equivalent to 

BYB2 *.^Bk_l^ 1+6 B2Bz 

k 
( 1 + 6 ) 5 > d + e i ) 2 

which, in turn, is equivalent to 

(1 + £l)2Bf > B \ . 
But (1 + e1)51 > (1 + ex)y > Bk by (6). Thus Y > (1 + e)J. This concludes the 
proof. 

We are now ready to prove the main proposition. 

Proposition 3.3: Let Hk, k > 3, be the set of integers S such that S is the per-
imeter of exactly k PPT's. Then Ek is infinite. 

Proof: Taking 6 = 1 in Proposition 3.2, we can count on k consecutive primes 
£}, #2, •••» ^ such that 

Bk < SlBl, 

so condition (2) is satisfied; moreover there is a prime P, such that condition 
(4) is satisfied. 
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Defining Ak, ut 9 and vt as in Proposition 2.1, we see that (3) is also sat-
isfied, so we may conclude that (ut9 v t ) , t E T9 generate k PPTfs having equal 
perimeter S = 2PkAk. 

Since y in (6) may be taken to be any number larger than £, it is clear 
that the above process may be repeated infinitely often. Each time we obtain a 
new set of k PPTfs having equal perimeters. 

It remains to show that no PPT, other than the ones constructed, can have 
perimeter S = 2PkAk. To do so, assume (u, v) generates a PPT with perimeter S 
- 2PkAk. We will show that (u9 v) is not a generator of a PPT unless (u9 v) is 
one of the pairs (ut, Vt) constructed above. 

Since S = 2u(u + v) =' 2PkAk = 2B1B2 •••
 BkPk> there are but a finite number 

of possible values for u and u + v. We assume first that Pk is a factor of u 
and consider the three possibilities: 

(i) u = Pk, u + v = BlBz ... Bk9 

(ii) u = B]_B2 ... BkPk, u + v = 1, 

(iii) u = qYq2 ... qmPk, u + v = qm+lqm + 2 ... qk> 
where q^i ••• ?m) ^ ? G {1 s 2, . .., k - 1}, denotes any one of the products of m 
different primes from the set {B^9 B2, . . . , Bk}, and qm+lqrn + 2 ••• qk the product 
of the remaining primes. 

In case (i), condition (4) implies 

2u = 2Pk < 45-^2 . . . Bk_l/Bk < BlB2 . . . Bk = u + v9 

so that u < V 9 a contradiction of (1). 

For case (ii) , V = i - u < 0, contradicting (1). 

For case (iii), using (4), we write 

( ?1<7 2 ••• < 7 * > < ^ + l W ••• ?*>Pfc = A A > AVB\ 
= B\ . . . B\> (qm+1qm+2 . . . ^ ) 2 . 

Then 
u = ? 1 ? 2 . . . qmPk > qm+lqm+2 ... qk = u + V9 

contradicting (1). 

Next, we shall assume that Pk is not a factor of u. Then Pk must be a fac-
tor of (u + i?) , and we consider the four possibilities: 

> w = 5 \B 2 ... S^, 

?2 ... BkPk, w = 15 

7W + l?m + 2 ••' <?fcPfc> M = <7l?2 •'• ?m» 

where ^ ^ °ea ^m9 m G ^ls 2, ..., fe - 2}, denotes any one of the products of 77? 
different primes from the set {Bl9 B2, ...9-Bk}9 and qm+iqm+2 -•• <7k the prod-
uct of the remaining primes. Note that u + V contains at least two of the 
primes B^ as factors. 

(IV) u + v = ^ P ^ , U = 5X^2 • -. ^t-l^t + 1 . . . Bk9 t £ T. 

In case (I), using (4), we get 

u + v = Pk < 2AklB\ < BXB2 . .. Bk = u9 

contradicting (1). 

( I ) 

( I I ) 
( I I I ) 

u + v = Pk 

u + v = Bl. 
u + v = qrn 
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In case (II), V = S152 ... BkPk - 1 > 1 = u, contradicting (1). 

For case (III), using (4), we have 

u + v = qm + lqm + 2 ... qkPk > qm + lqm+2 .-• qk^k^\ 

a contradiction of (1). 

Case (IV) is seen to describe the k pairs (ut, Vt) defined above. These k 
pairs then generate k PPTTs with equal perimeters S = 2PkAk, and no other PPT 
can have this perimeter. 

4. Examples 

Let us conclude with a few examples. 

(1) When k = 3, we have: 

Bi 

11 
31 
17 
17 
23 
23 
23 
29 

B2 

13 
37 
19 
19 
25 
29 
29 
31 

$3 

15 
43 
21 
21 
29 
31 
31 
37 

^3 

19 
53 
25 
29 
33 
41 
43 
41 

KU\s Vi ) 

(195, 14) 
(1591, 52) 
(399, 26) 
(399, 94) 
(725, 34) 
(899, 44) 
(899, 90) 
(1147, 42) 

(uz, v2) 

(165, 82) 
(1333, 628) 
(357, 118) 
(357, 194) 
(667, 158) 
(713, 476) 
(713, 534) 
(1073, 198) 

(u3, 

(143, 
(1147, 
(323, 
(323, 
(575, 
(667, 
(667, 
(899, 

v3) 

142) 
1132) 
202) 
286) 
382) 
604) 
666) 
618) 

S 

81,510 
5,228,026 
339,150 
393,414 

1,110,550 
1,695,514 
1,778,222 
2,727,566 

(2) Finally, let k = 4 and 
Bl = 17, B2 = 19, B3 = 21, Bh = 23. 

For the integer P4 within the bounds in (4), we can select any prime P4 in 
the set 

{541, 547, 557, 563, 569, 571, 577, 587}; 

moreover, Proposition 2.1 allows us to take any nonprime Pi+ in the set 

{545, 559, 565, 581, 583}. 
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