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1. Introduction

In Chapter 3 of his second notebook [l, p. 164], Ramanujan defined polyno-

mials
r-2
Ay (@) = Y a(r, Kx?r %1 (» 2 2) (1.1)
K=o

with Al(x) = x. The numbers a(r, k) are integers such that a(2, 0) = 1 and,
for r =z 2,

a(r + 1, k) = (r - a(r, ¥k - 1) + 2» ~ k - a(r, k). (1.2)

Also, a(r, k) = 0 when Xk < 0 or K > » - 2. Properties of 4,(x), and the moti-
vation for defining them, are discussed in [1, pp. 163-166]. 1Included in that
reference is a list of the polynomials A,{x), 1 < » < 7, and the following theo-
rem:

r-2
S oalr, k) =A,(1) = (r - 'L, (1.3)
k=0
In [3] it was shown how a(r, » - k) can be expressed in terms of Stirling
numbers of the first kind, and the following special cases were worked out:
a(r, 0) = 1 e3¢5 -0 (2r = 3), (1.4)
afr, 1) = [1+ 3¢5+ > o (2r - 3)](r - 2)/3, (1.5)
alr, » = 2) = (r - 2)! (1.6)

We note here that it is easy to prove by induction that
a(r, 2) =(r - 3)(x - 2)(r -~ 1)5+ 7% == «(2r - 5)/3.

The main purpose of the present paper is to prove congruences for a(r, k)
(mod p), where p is a prime number. As an application of some of these congru-
ences we prove Ap(ac)/xp+1 and Ap._j(x)/x?P are irreducible over the rational
field. We also determine, for all », the least residues of a(r, k) (mod 2),
(mod 3), and (mod 4). For each r we find the largest k such that a(r, k) # 0
(mod p), and we make a conjecture, based on computer evidence, about the
smallest %X such that a(r, k) # 0 (mod p). We also conjecture the following
periodicity property:

a(r + (p - Dp, k+ (p - Vp)=za(r, k) (mod p).

This has been verified for all primes p < 251. A few other results and conjec-
tures are given for moduli not necessarily prime.

2. Congruences (Mod P)

Theorem 2.1: For any prime number p,
a(p, k) =0 (mod p) (kK =0, 1, ..., p - 3),

1989] 61



CONGRUENCES FOR NUMBERS OF RAMANUJAN

a(p, p - 2) =1 (mod p).
Proof: In [1, p. 164] we have
A) = @l - DA, (@) + xﬁij(” - 1>Ak(x)Ar_k(x), 2.1)
K=1

and hence

Ap+1(x) = —xAp(x)+-xAp(x)Al(x) = (g2 - x)4Ap(x) (mod p).

Comparing coefficients of sz'k+l, we have

al(p + 1, k) = a(p, k) - a(p, k - 1) (mod p). (2.2)
From (1.2) we have

alp + 1, k) = ~a(p, k - 1) - (k + Dya(p, k) (mod p). (2.3)
Combining (2.2) and (2.3), we see that

(kR + 2)a(p, k) =0 (mod p) (k=0, ..., p—-2). (2.4)

The theorem now follows from (2.4) and (1.6). We note that results similar to
Theorem 2.1 have been proved for the Stirling numbers [2, pp. 218-219].
Theorem 2.2: For any odd prime number p,

a(p =1, k) 20 (mod p) (k =0, 1, ..., p - 4),

alp -1, p=-3) 2 (p - 3)! (mod p).

Proof: From (1.2) we have
alp, k) = =2a(p -1, k = 1) = (k + 3ap - 1, k) (mod p).
Thus, by Theorem 2.1,
(k+3)ap -1, k) = =2a(p -1, k = 1) (mod p) (k =1, ..., p = 3).
. (2.5)
Since
a(p = 1, 0) = 1+3e «+s «(2p = 5) =0 (mod p) for p > 3,
the theorem follows from (2.5) and (1.6).

Theorem 2.3: For any odd prime number p, the polynomials
Ap(x)/xP*L  and Ay _q (@) [P

are irreducible over the rational field.

Proof: Assume p > 2. We know
a(p, k) =0 (mod p) (k =0, 1, ..., p - 3),
a(p, 0) = 13+ --- «+(2p -3) #0 (mod p?),
a(p, p - 2) =1 #0 (mod p).

Thus, Ap(x)/xp+1 is irreducible by Eisenstein's Criteria. The proof is similar
for Ap_l(x)/xp.

We note here that Theorem 2.1 could be generalized by using pd, J 2 1, in-
stead of p. Replacing p by pJ in the proof, we have

a(p?, k) =0 (mod p) (k # -2 (mod p)).
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Theorem 2.4: 1f p is an odd prime and if m > p, then
a(m, k) =0 (mod p) (k=0,1, ..., p - 3).
If m > p, then
am, p - 2) =a(p+t, p-2) =13+ .-. (2t -1) (mod p)-.
Proof: We use induction on m. The first part of the theorem is true for m = p.

Assume it is true for m = p, p + 1, ..., ». Then, by (1.2) we have, for k = 0,
I, ..., p =3,

a(r + 1, k) =0 (mod p);

therefore, the first part of the theorem is true for all m = p. Now, by (1.2),
if ¢ > 0, then

a(p+t, p-2) =2t -Dalp+t-1,p-2)
le3e cee o (2t = Da(p, p - 2)
le3¢ .- (2¢t - 1) (mod p).

1

This completes the proof.
We note that when ¢ = (p + 1)/2,
a(p + t, p - 2) 0 (mod p) (p > 2).

We also note the following special cases of Theorem 2.4. For k =0, 1, 2, ...,
p - 3:
a(p + 1, k) = 0 (mod p); a(p + 2, k) =0 (mod p):
a(p + 1, p=2) =1 (mod p); alp + 2, p - 2) =3 (mod p);
a(p + 1, p - 1) = -1 (mod p); a(p + 2, p-1) = -2 (mod p);
a(p + 2, p) =0 (mod p).

Theorem 2.5: Let p be an odd prime. Then, for k 0, 1, ..., 2p = 5:
a(2p, k) = 0 (mod p); (2p = 1, k) = 0 (mod p);
a(2p, 2p - 4) 1 (mod p); a(2p = 1, 2p = &)
a(2p, 2p = 3) -2 (mod p); a(2p = 1, 2p - 3)
a(2p, 2p = 2) = 0 (mod p).

1 (mod p);
0 (mod p);

11
11

|

Proof: We know by (1.6) and Theorem 2.4 that

a(2p, 2p - 2) 20 = a(2p, p = 2) (mod p).
From (2.1) we have

Ay (@) = (- + 22)A,, (x) + 20y (24, (@) (mod p).
Thus, by Theorem 2.1 and Theorem 2.4 (with m = p + 1),

Apper(®) = (mx + @?)Ay, (x) + 227745 - 202P*H (mod p) . (2.6)
Congruence (2.6) gives, for k # 2p - 3, 2p - 4,

ap + 1, k) = a2p, k) - a(2p, k = 1) (wmod p), (2.7)
and from (1.2) we have

ap + 1, k) = =(k + 1Da(2p, k) - a2p, k = 1) (mod p). (2.8)
Combining (2.7) and (2.8), we have, for k = 2p - 3, 2p - 4,
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(k + 2)a(2p, k) = 0 (mod p).

For k = 2p - 3 and k = 2p - 4, (2.6) and (2.8) give
2p - a(2p, 2p - 3) 2 (mod p),
(2p - 2)a(2p, 2p - 4) = =2 (mod p),

and we see that the congruences for a(2p, k) in Theorem 2.5 are valid. Now, by
(1.2) and (l.4), we have

a(2p, k) = =2a(2p - 1, k = 1) = (k + 3)a(2p - 1, k) (mod p),
a(2p -1, 0) =0 (mod p). (2.9)
Thus, a(2p -1, k) =0 (mod p) (k =0, 1, ..., p - 4),

Ht

i

and by Theorem 2.4,

a(2p -1, p - 3) 20 (mod p).
It is now clear that the congruences for a(2p - 1, k) follow from the congruen-
ces for a(2p, k) and (2.9). This completes the proof.
Theorem 2.6: 1f p is prime and m 2 2p, then

a(m, k) =0 (mod p) (k =0, 1, ..., 2p = 5),

a(m, 2p = 4) =a@2p +t, 2p = 4) 2 13 -+« «(2¢ + 1) (mod p).
Proof: We use induction on m. The theorem 1is true for m = 2p. Assume it is
true for m = 2p, 2p + 1, ..., r. Then, by (1.2), we have

al(r + 1, k) 0 (mod p) (k=0,1, ..., 2p = 5);

therefore, the first part of the theorem is true for all m > 2p. By (l1.2), we
have, for ¢ > 0,

a(2p + t, 2p - &)

H

2t + Da@p +t -1, 2p - 4)
3e5e -0 o (2t + L)a(2p, 2p - 4)
1+3e¢5e¢ e o(2¢ + 1) (mod p).

Wi

This completes the proof.

Using the same sort of proof as the proof of the first part of Theorem 2.5,
we can show, for p > 2,

a(Bp, k) 20 (mod p) (kK =0, 1, ..., 3p =75 k=z2p=-2).
The case a(3p, 2p - 2) has not been resolved. We indicate with Conjecture 1 in
Section 4 what the general situation appears to be. The next theorem deals
with a related problem, namely, the problem of finding the largest k such that
a(r, k) # 0 (mod p).

Define g(p, »r) to be the largest k such that a(r, k) # 0 (mod p).

Theorem 2.7: Let r be a positive integer, »r = 2. Write

r=2+(s(p-1)+8p+u
with 8 20, 0 < £ <p -2, and 0 <y <p - 1. Then

glp, v) =m=sp(p - 2) + t(p - 1) + u.

Furthermore,

a(r, m) ut (p-2)!/(p-2-1¢)! (mod p).
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Proof: We give a brief outline of the proof by induction on s, ¢, and u. Note
that showing a(r, k) = 0 (mod p) for all k¥ > m is simple, and we omit the de-
tails. The recurrence relation (1.2) is the main tool in all of the following.
The theorem is certainly true for s = ¢ = u = 0. For fixed s and ¢, induction
on u is straightforward. Note that the induction applies to arbitrarily large
u; the statement of the theorem restricts u to the nonzero values of a(», m).
If the theorem is true for some fixed value of s, u = p — 1, and some value of
t, then it is not hard to show that the theorem must be true for the same s, u
= 0, and the successor of ¢. By induction, if this theorem is true for some s
and for ¢ = u = 0, then it is also true for that s and all 0 < ¢ < p - 2 and
0<u<p-~-1. .

Now suppose the theorem is true for some s and all ¢ and u such that 0 <
t<p-2and 0 <y <p-1. Let

ro =2+ (s(p-1 +((-2)p
and let
my = splp - 2) + (p -2 - 1).

Then, putting £ = p — 2 in the induction hypothesis, we have

alry + u, my + u) = ut (mod p) for 0 < u <p - 1.

Since ry - 2

a(ry, my = 1) =0 = 0°0! (mod p).

0 (mod p) and 2r, - (mO + 1) - 3 = 0 (mod p), we must have

Now induct on u to show that
a(ry +u, my +u - 1) = u-ul (mod p).
Finally, we can conclude that:
a(ry + p, my +p) =pl =0 (mod p);
a(ry +psmy+p-1) =pepl =0 (mod p);
a(2 + (s + D) - Lips (s + Dp(p - 2)) a(ry +p, my +p = 2)
=0ca(ry+p=-1,my+p=-3) + (4 -0~ 3)ealry+p -1, my+p = 2)
-1 -(p-Dt=1 (modp).

It follows that the theorem is true for ¢ = u = 0 and s + 1. By induction, the
theorem is true for all s 2 0, 0 <t <p -2, and 0 £ u <p ~ 1.

The proof of the following theorem follows the same lines as the proof of
Theorem 2.2.

i

[H]

Theorem 2.8: Let p be prime, p > 3. Then, for 1 < ¢t < (p - 3)/2,
a(p - t, k) =0 (mod p) (k =0, 1, ..., p -2t - 2).
For 2 <t <p -1,
a(p - t, k) =0 (mod p) (kK =0, 1, «.., 2p = 2t = 2).
For example, using Theorem 2.8, Theorem 2.2, and (1.2), we have, for p > 5,
a(p - 2, k) =0 (mod p) (k =0, 1, ..., p - 6),
alp = 2, p =5 = -(p - 4)t/3 (mod p),
(p - 4)! (mod p).

a(p - 2, p - 4)

3. Congruences (Mod 2), (Mod 3), and (Mod 4)

In this section we first determine when a(r, k) is even and when it is odd.
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Theorem 3.1:
a(r, 0) =1 (mod 2) (r = 2),
a(r, 1) = » (mod 2) (» 3),
a(r, k) 0 (mod 2) (k > 1).

v

Proof: The congruences for a(r, 0) and a(r, 1) are clear from (1.4) and (1.5).
By (1.2) we have, for k > 1,

a2r, k) = (k + D)a(2r - 1, k) (mod 2).
If k is odd, we clearly have a(2r, k) is even. If k is even, then
a(2r, k) = a(2r - 1, k) (mod 2).
And by (1.2), since k - 1 is odd,
a2r - 1, k) = a(2r - 2, k) (mod 2).
Thus,
a2r, k) = a(2r - 2, k) = «++ = a(k + 2, k) = k! =0 (mod 2).
Now since
a2r + 1, k) =2 a2r, k - 1) + (kK + Da(2r, k),
we have a(2r + 1, k) is even if k > 1. This completes the proof.
The patterns (mod 4) and (mod 8) are suggested by the computer and can be

proved by induction on r. For (mod 4) we have the following congruences.

Theorem 3.2: a(r, k) = 0 (mod 4) for all k except:

_ §1 (mod 4) if » = 1 or 2 (mod 4),

alr, 0) = {3 (mod 4) if » = 0 or 3 (mod 4),
_ {1 (mod 4) if » = 1 or 3 (mod 4),

ars D299 (mod 4) if r = 0 (mod 4),

a(r, 2) = 2 (mod 4) if » = 0 (mod 4),

a(r, 3) = 2 (mod 4) if » = 1 (mod 4).

Theorems 3.1 and 3.2 suggest the following, which can be proved by means of
(1.2) and induction on #n.

Theorem 3.3: 1f k > 2n, then a(r, k) = 0 (mod 27).

To prove congruences (mod 3) we need the following lemma, which is a spe-
cial case of Conjecture 4 of Section 4.

Lemma: For r > 2, a(r, k) = a(r + 6, K+ 3) (mod 3).

Proof: The lemma is true for r = 2, since
a(8, 3) =1 (mod 3),
a(8, k) = 0 (mod 3) if k = 3.

Assume it is true for r = m - 1. Then, by (1.2),

am+ 6, k+3) = (m - 2)a(m - 1) + 6, k + 2)
+ (2(m-1) =1 - KkK)a(m - 1, k)

(continued)
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(m=-2)am -1, k- 1) + 2m-1) -1 - k)a@m - 1, k)
a(m, k) (mod 3).

Theorem 3.4: a(r, k) = 0 (mod 3) for all k except:

a(r, [P - 1}) =1 (mod 3), » > 2,

2
a@ {r+l]>‘ r(r + 1) (mod 3) if » Z 0 (mod 6),
’ 2 1 (mod 3) if » = 0 (mod 6).

1

I

Proof: Suppose » = 2 (mod 6), i.e., » = 65 + 2. Then, by the lemma,

alrs k) = a(6(j = 1) +2, k= 3) = -+ = a2, k - 35) (mod 3).
Thus,
_ f0 (mod 3) if k = 37,
alr, k) = {1 (mod 3) if k = 3j = (r - 2)/2.

The other cases of r (mod 6) are handled in exactly the same way.

4. Conjectures

Theorem 2.4, Theorem 2.5, and information given by the computer suggest the
following conjectures.
Conjecture 1: For all integers ¢ and positive integers % such that i + ¢ 2 1,
athp + t, k) =0 (mod p), Kk =0, 1, ..., h(p - 2) - 1,
athp + t, h(p = 2) = 1+ 3 «+- « (2t + 2k - 3) (mod p).

For ¢t =2 0, Conjecture 1 has already been proved in Section 2 of this paper
for h = 1, h = 2. 1If we try induction and assume true for » =m - 1, we can
show, as in Theorem 2.1 and Theorem 2.5,

(k + 2)a(mp, k) = 0 (mod p) (k =0, ..., m(p - 2) - 2).
Thus, the proof depends on showing
a(mp, k) = 0 (mod p) if k = -2 (mod p).
The rest of the proof, for ¢ > 0, would then follow. The cases ¢ 2z 0 have been
verified by the computer for all primes less than or equal to 251. . The case
h + ¢t = 0 leads to the next conjecture.
Conjecture 2: Let p be any prime.
(i) Let & be any nonnegative integer. Then
a(2 + hp(p = 1), m) = 0 (mod p) if m # hp(p - 2).
(ii) Let % be a nonnegative integer, i Z 0 (mod p). Then
a(l + h(p - 1), m) = 0 (mod p) if m # hip - 2).
(iii) Let h be a nonnegative integer, # Z 0 or p - 1 (mod p). Then
ath(p = 1), m) = 0 (mod p) if m = h(p - 2) - 1.
By Theorem 2.7, we know:
(1) a2 + hp(p - 1), hp(p = 2)) = 1 (mod p).
(ii) Let h=sp +t, 1 <t <p -1, s 20, then
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a(l + h(p - 1), h(p - 2))

a2+ (s(p-1+ & -D)p+ (-1 -1,
sp(p-2)+(-D@{E-1)+@E-1) -1t

p-1-te(@-2)/p-2-((=-1))! =1 (mod p).
(iii) Let h =sp+t, 1 <t <p -2, s <0, then
a(h(p - 1), h(p - 2) - 1)

a2+ (s(p -+ -1p+ (p-2) -1t),
spp -2+ (@E-D@p-1)+@-2) -%)

p-2-t)@-DP-2-E-1)t=@-2D/p-1-t).

i

The authors are grateful to the referee for suggesting the next conjecture.
Part of this conjecture would follow from Conjectures 1 and 2.
Define f(p, r) to be the smallest kX such that a(r, k) Z 0 (mod p).

Conjecture 3: Clearly f(p, r) = 0 if » < (p + 1)/2. Thus, for » > 2:

D) F = - D|E] -1 (- D

s

(i1) f(p, r) (p - 2) -1 if r=¢t (mdp-1), 1 <t < (p+1)/2;

(iii) f(p, r) =2 (p - 2)

+2tifrzt+ (p+1)/2 (mod p - 1),
1<t<(p-5)]/2.

In some cases, f(p, r) is larger than the formula given in (iii) above.
For example, f(l1, 17) = 13, f(l1, 48) = 42, f(13, 22) = 19, and f(13, 68) = 59
are larger by 2, and f(41, 350) = 334, f(43, 1743) = 1703, f(6l, 2152) = 2111,
and f(67, 2038) = 2002 are larger by 4. It appears to be difficult to predict
when f(p, r) will be larger than the formula or by how much it will be bigger.
There are many cases where f(p, r) is larger by 2 or 4, and we suspect the
formula could be off by even more for very large primes.

Conjecture 4: If p is any prime, then
alr + p(p = 1), m+ p(p - 2)) = a(r, m) (mod p) for any r > 2, m = 0.
Because of the recursion formula, (1.2), it suffices to show that
a2 +p(p -1, m+pp - 2)) =a(2, m) (mod p)

for all integers m. In this manner, Conjecture 4 has been proved on the
computer for any prime p < 251.

Conjecture 5: 1If p is any prime and m 2 0, then
a(r +pr(p - 1), m+ p"(p - 2)) = a(r, m) (mod p")
for all sufficiently large r.
Conjecture 5 has been proved on the computer for p» up to 213, 37, 55, 74,
113, 133, 172, 192, 232, 292, 312, 372, 412,
Conjecture 6: I1f p is an odd prime, then
(1) a(r, 0) = p (mod 2p) for r > (p + 3)/2;
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0 (mod 2p) if r is even

p (mod 2p) if » is odd 204 = (P +3)/2;

(ii) a(r, 1) = {

(iii) if m 2 2 and r 2 (p + 3)/2, then
a(r +pp - 1), m+p(p - 2)) = a(r, m) (mod 2p).

Conjecture 6 can be proved to be true if Conjecture 4 is assumed to be
true. Similar conjectures for other composite moduli also seem to hold, but
are more complicated to state.

5. Concluding Remarks

Apparently not much is known about the numbers a(r, k). It would be useful
if a generating function and a combinatorial interpretation were found. Also,
it appears difficult to find values of 4,(x) for x = 0,  # 1. We remark that
it is easy to find derivative formulas for A,(x), however. It follows from
(1.2) and the definition of 4,(x) that

w34l (x) = A, (@) - (2 - Dady(x),

and thus it is easy to find a general formula for A&”(m). For example, we have
by (1.3) and the above comments,

A1) =»r" - (r - )T
A1) = (r+ D[+ 1" = 2r7 + (r - D7].
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