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1. Introduction 

Consider N points placed on the circle of unit circumference in the follow-
ing way: begin by placing a point anywhere on the circle. Now place another 
point so that the angle (or circumferential distance) between the two points, 
measured clockwise from the first point, is equal to a. The third point is now 
placed at a clockwise angle of a from the second point. Thus, we successively 
place N points on the circle by our angle a. 

Our problem is to find the value for a so that these points are spread 
about the circle in the most even (which we call optimal) fashion. We show 
that, in certain senses, the golden section (a = T = ( v5 - l)/2) provides the 
optimal spacing of points, where the number of points can assume any value. 

This problem originally arose while investigating the phenomenon of phyllo-
taxis—regular leaf arrangement. Most higher-order plants exhibit a remarkable 
degree of regularity in the positioning of their leaves. In a sunflower, for 
instance, one can perceive two sets of opposed spirals which each partition the 
set of florets. Intriguingly, the number of spirals are almost certainly 
consecutive members of the Fibonacci sequence 

Fn = Fn-l + Fn.2, n > 2, F0 = 0, Fl = 1. 

This pattern (which we call Fibonacci phyllotaxis) manifests itself in 95% of 
those plants which produce their leaves sequentially. In parallel to this 
observation, the divergence angle subtended by consecutively formed leaves is 
quite close in value to the ratio of these consecutive Fibonacci numbers. In 
the limit, Fn_i/Fn is equal to the golden section. To simplify the situation, 
we consider just the angular displacement of the leaves and thus we develop a 
simplistic model of plant growth with leaves appearing as points on a 
meristematic ring, successively placed at a constant angle. 

What this paper shows is that the plant places its leaves in the optimal 
manner—in order to spread its leaves most evenly (and thus reduce leaf 
overlap) the optimal divergence angle is shown to be the golden section. The 
partition of the circle by the golden section is also examined in detail to 
reveal a rather self-similar structure. 

We use results from The Three Gap Theorem (originally the Steinhaus Conjec-
ture) which states that the above N points partition the circle into arcs, or 
gaps, of at most three and at least two different lengths! The result is all 
the more remarkable since it holds for all irrational a and for any number of 
points. It also holds for rational a = p/q with the number of points less than 
q. (For N = q the circle is partitioned into q equal gaps.) Even though this 
has been proved by various mathematicians ([1], [2]-[7]), the result does not 
appear to be well known. 

Note that, in order to conserve space, where complete proofs of results are 
not presented we either refer the reader to an existing proof or briefly 
outline a proof. 
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2. The Three Gap Theorem 

Suppose that we have consecutively placed N points on a circle by the angle 
a. Let (ui(N) , u2(N) > • • • > uN(N)) be the sequence of points as they appear on 
the circle, ordered clockwise from the origin U\{N) = 0. That is, 

{ui(N), u2(N), ..., uN(N)} = {0, 1, 2, ..., N- 1} where {uja} < {z^ + 1a}. 

Thus, for example, with a = /2 the first 12 points placed on the circle appear 
in the order (0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7). We call Uj+i(N) = Uj+i 
the successor to Uj , or Wj-+i = Suc(u7-). Equivalent to the original statement 
of The Three Gap Theorem is the fact that the difference between succeeding 
points assumes at most three, and at least two, different values. The 
following determines the ordering of points around the circle. (For a proof, 
see van Ravenstein [7, Theorem 2.2].). 

0 < m < N - u2, 

uN, N - u2 < m < u^9 

u$ < m < N. 

Thus, for our example with a = /2 and N = 12, 

5, 0 < m < 7, 

-7, 7 < m < 12. 

It is easily seen that Uj = 5 (j - 1) mod 12, where y mod x = y - x[y/x] = 
x{y/x}. In general, if N = u2 + u%9 the circle is partitioned into gaps of 
just two different lengths and then 

ud = ((j - l)u2) mod N, j = 1, 2, ..., N. (1) 

It is easy to see that the length of the gap formed by point m and Suc(m) 
is equal to {(Sue(777) - m) a} where {x} denotes the fractional part of x such 
that x = [x] + {x} where [x] is the largest integer not greater than x. In 
fact, for gap lengths less than ~ this gap length is equal to 

|(Suc(/7?) - 777) a I , where \\x\\ =min({x}, 1 - {x}) = \x - [x + j ] \ , 

the difference between x and its nearest integer. (This is always the case for 
N > ql [notation defined in Theorem 2]; in what follows, we will always make 
this assumption. Note that ql is the first point to replace 1 as the closest 
point to the origin.) Thus, Theorem 1 shows that the circle of N points is 
partitioned into N - u2 gaps of length ||u2all > N " UN §aPs o f length \\uNa\\ and 
u2 + uN - N gaps of length 1̂ 2̂ 11 + ||%a|| • T n e same applies for rational a, say 
a = p/q in lowest terms, where N < q. In this paper, however, we will always 
assume that a is irrational. 

Point u2 is the successor to 0, while 0 is the successor to uN; that is, u2 
and uN are the points which neighbor the origin. We see that we need only know 
the values of these two points to determine the entire ordering. 

We can characterize the angle a by the following. Let 7(a) denote the path 
of a defined to be a sequence of pairs (u2 > uN), the points which neighbor the 
origin as points are successively included on the circle. For example, 

7(/2) = ((1, 2), (3, 2), (5, 2), (5, 7), (5, 12), . . . ) . 

It can be shown ([7, Proposition 4.2]) that each point always enters one of 
the larger gaps. Two gaps are formed, one equal in length to the smallest gap 
present. Thus, it is natural to define the ratio of gap division as the ratio 
of the smallest to the largest gap present. Hence, we let 

Theorem 1: ( u2, 
Sue (777) - m = <{ u2 -

-u N> 

Sue (777) 
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rN(a) 
min( l^a I , |%a|) 

||u2a| + \\uNa\\ 

[This is in fact the ratio point N - 1 that divides some (large) gap.] 
The path sequence 7(a) and the ratio of gap division rN( a) are quantities 

we will use in our analysis of the golden section1s unique distribution 
properties. We can in fact determine explicitly their values in terms of the 
continued fraction expansion of a, which is expressed by 

a0 + 
ai + 

1 
a0 + 2 a3+ ... 

\<2QI &Y> ^ 2 5 ^ 3 s • • • J • 

The n t h t a i l of a i s 
tn = te„; <*„ + !» aw + 2» •••>» (2) 

such t h a t 

a = {a 0 ; al9 a2, . . . , an_l9 tn}. 
We say that a is equivalent to 3 if some tail in a is equal to some tail in 3. 

Partial convergents are defined by the (irreducible) fractions 

Pn9i _ Pn-2 + tPn-l _ r . - i - - . ' i o 

4n9<L Qn-2 + %CLn-l 

where 
Pn, an Vj\ 

«n,a„ " <Ir. V-2 = <?-l = ° ' ? - 2
 = P- l = K 

Theorem 2: 

u2 = 
( ? n - l ' 

1 ? • • i > ^ w ^ - 1 

n odd, 

n even, 

We call pn/qn a total convergent to a. 
The reader is referred to [7, Theorem 3.3] for a proof of the following. 

(ln,i-l> n ° dd> 

v. <? _ i » n even, 

where <?„,;_! < N < qn^, 2 < i < an (n > 2) . 

For qn.x < N < qn>1 (n > 2), 

W»-2» n even> W n - 1 

For 71/ < qx, Uj = j - 1, o = 1, 2, ..., tf. 
The following proposition may be easily proved from the definition of rN (a) , 

Theorem 2, and the continued fraction theory. 

Proposition 3: / ^ 

2 - i + tn> 1n,i-l < * * ?»,i' 
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where i = 2, 3, . .., an, (n > 2). [tn is defined by (2). 

From Theorem 2, 

7(a) = ((1, q})\ (q i9 ^ n _ 1 ) / ; ; i = 1, 2, s <^n' ^ ^-' ~̂ > • ) . (3) 
where 

(1, ?i) 

^ ? i 5 ^ - P " 

(15 ^i) , 0 < a < 2", 

Sq\> 1) 3 | < a < 15 

'(<7«-l> ?«,*)> n odd, 

3. The Golden Section 

For convenience, let the partition of the circle of unit circumference by 
the successive placement of points 0S 1, 2, ... by the golden section, T, be 
denoted by G. The partition by 1 - x we denote by G!. 

The continued fraction of x is given by 

x = {0; 1 + x} = {0; 1, 1 + x} = {0; 1, 1, 1, }. 

All convergents to x are total convengents and 

Pn = ?n-l = Fn = Fn-l + Fn-2> n > I , F _ 1 1» ^n 0. 

That is, convergents to x are equal to the ratio of consecutive Fibonacci num-
bers. From Theorems 1 and 2, for Fn < N < Fn+i> 

Suc(m) 

0 < m < N - F„ 

-n -2* 

-n-\-

N F„ < m < F, n - 1 ' 

Fn_l < m < N, 

0 < m < N - F. 

~F, 
-F„ 

n-23 N - F 
n-l> 

• l < rn < Fn. 

n odd, 

n even. 

(4) 

Fn < m < N, 

When N = Fn+l, from (1), 

u . = ((_!)*-! (J- _ l)Fn) m Q d ^ + ^ 

Since Fn.l - Fnx = ( - T ) n (by induction), (4) shows that N points (Fn < N < Fn+i) 
partition the circle into N - Fn_i gaps of length xn- 1, N - Fn gaps of length xn 

and Fn+i - N gaps of length Tn~2. 
From Proposition 3, since tn = 1 + T, n = 1, 2, ..., 

-2 *W(T) 1 F < N < F^ n+ 1 ' (5) 

Theorem 4.1 from [7] describes the partition G by looking at the transfor-
mation of gap types as points are included on the circle. Gap types are either 
!flarge!f or "small" when N that is, when N is the denominator of a 
convergent to a. For the golden section, this theorem describes the following: 
each large gap present: when N = Fn is divided by the addition of a further Fn-\ 
points into two new gaps which can be labelled (in clockwise order) as 
small:large (n odd) or large:small (n even) when N = Fn+i. Those small gaps 
present when N = Fn can then be labelled as large. 
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This fact and (5) can be used to prove the following self-similarity prop-
erty of G, thus demonstrating the beautiful symmetry inherent in Fibonacci 
phyllotaxis. 

Theorem 4: Consider any large gap present on the circle partitioned by the 
placement of Fn points by the golden section. Include further points on the 
circle and observe the resulting partitioning of this gap. If we pretend the 
gap is itself a circle of unit circumference (by lengthening it by the factor 
T n " 2 and identifying its endpoints as the same) then its partition is identical 
to G if n is odd, or equal to Gr if n is even. 

Let us interpret I to be a time variable and define the age of a gap to be 
the time it has survived without being divided. That is, the age of the gap 
with endpoints Uj, Uj + \ is N - 1 - max(uj> Uj + \). From [7, Proposition 4.2] 
each point, for all a, divides the oldest of the larger gaps. Using [7, 
Theorem 4.1] it can be shown that only for the golden section does the 
formation of a large gap always coincide with that of a small gap. This proves 
the following. (Note that we assume that a is between 0 and 1. If a > 1, the 
following results hold if a is replaced by its fractional part, {a}.) 

Theorem 5: For -̂  < a < 1, each point always enters the oldest gap if and only 
f a = T . For ( 
2 = (3 - /5)/2. 

if a = T. For 0 < a < |, 

Intuitively, in terms of phyllotaxis, it seems sensible that points be in-
serted in the oldest gap as the above result shows. This property must ensure 
an ideal distribution of points. In fact, the following theorem shows that the 
golden section provides the optimal value for gap division (our criteria for an 
optimal distribution) in the sense that the smallest value assumed by the ratio 
of gap division is largest for the golden section (where -j < a < 1). However, 
the golden section is somewhat of a compromise as Theorem 7a shows (that the 
ratio of gap division1s maximum value is smallest for the golden section, where 
1 < « <f). 
Theorem 6: max min rN (a) = T 2 , exclusively attained by a = T. 

\<OL<1 N 

max min rN(a) = T 2 , exclusively attained by a = T 2 . 
0 < a < ~ N 

Proof: We first consider the case where ^ < a < 1. From Proposition 3, 

1 1 
min z» (a) = min min r (a) = min = , 

N n qn_1< W <qn
 N n 1 + tn 1 + max tn 

1 n 

where n = 2, 3, ... (q± = a^ ~ 1 since a > j). 
Consider a = af * T , which has ak > 1 for some integer k greater than 1. 

Then max t n > t k > 2, so rN(ar) < |. The result follows since -| < rN ( T ) = T 2 . 

The second statement follows by symmetry (note that 2»„(1 - a) = P^(a)). 

Theorems 7a and 7b follow from Proposition 3 in a similar fashion. 

Theorem 7a: min max rN (a) = T 2 , exclusively attained by a = T. 
7 < a < § N 
min max p„7 (a) = T 2 , exclusively attained by a = T 2 . 

i < a < l N NK 

Theorem 7b: min max rN (a) = T 2 , exc lus ive ly a t t a i n e d by 
j < a < 1 N 
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a = {0; 1, a , 1 + T } = ———17*75 where a i s any i n t ege r g r e a t e r than 1. 
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min max rN(a) = T , e x c l u s i v e l y a t t a i n e d by 
0 < a < j N 

a = {0; a + 1, 1 + T } = — — T~T» w n e r e a i s anY integer greater than 1. 

We determine the value of a which ensures a path which consistently maxi-
mizes the length of the smallest gap on the circle. For each value of N, the 
points are generated by a constant angle a. This value of a may change with N 
but only in such a way that the path is retained: so that the addition of extra 
points does not alter the relative order of existing points. We show that 7(T) 
is the path which ensures that the smallest gaps are consistently as large as 
possible [where, initially, (u2(4), u3(4)) = (2, 1), \ < a < f]. That is, as N 
increases, if the pair (u2(F) 9 uN(N)) does not assume the value equal to the 
appropriate successive element of 7 ( T ) , then the smallest gap thus formed will 
not be as large. 

Note that the golden section has path 

7(T) = ((1, 1), (2, 1), (2, 3), (5, 3), . . . ) , 

= ((1, 1), (Fn+l, Fn) ', n = 2, 3, . . . ) . 

Theorem 8: Suppose that (u2(4), w3(4)) = (2, 1) generated by a constant angle 
a where -̂  < a < -j . Then 7 ( T ) is the path which consistently maximizes the 
length of the smallest gap. 

1 2 

Proof: We prove the result by induction. Initially, -^ < a < -^ or a = {0; 1, 1, 
£3}, 1 < £3 < °°5 such that point 2 is closest to the origin. The next element 
in the path must, from (3), be (2, 3). From Proposition 3, point 2 is furthest 
from the origin if a3 = 1 than if a3 > 1 since then it divides the gap bordered 
by the origin and the first point into a larger ratio. Hence, a = {0; 1, 1, 1, 
£4}. This ensures, from (3), that the next element in the path is (5, 3). Thus, 
the first three terms in the path belong to 7(x). 

Now, assume that the terms in the path equal successive Fibonacci pairs and 
that (u2(N), uN(N)) = (Fn_i, Fn) where Fn < N < Fn+i9 n even. Then, a = {0; 1, 
1, 1, ..., 1, tn} (n - 1) ones, 1 < tn < °°. The next element in the path must 
be (Fn+1, Fn) succeeded by (Fn+ 1, Fn + 2) if an = 1. From Proposition 3, the small 
gap bordered by origin and point Fn is larger if an = 1 than If an > 1. The case 
is similar for odd ft. Thus, the path is equal to 7 ( T ) -

Note that the theorem shows that maximizing the length of the smallest gap 
ensures convergence to the golden section. Similarly, 7(x2) consistently maxi-
mizes the length of the smallest gap where, initially, there are three points 
on the circle and ^< a < j . The following generalizes Theorem 8. Its proof 
is similar in manner and is omitted. 

Theorem 9: Suppose that we have placed qn + 1 points (ft > 2) generated by a = 
{0; a\> a2j ...5 ccn> £n + l̂ « Then as more points are added, 7(af)> where 

t Sn 1 + I Vn + TPn-l 
aT = {0; al9 a2, ..., an, 1 + x) = - — — — , 

qn
 + TCln-i 

is the path which consistently maximizes the length of the smallest gap. 
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