A SIMPLE METHOD WHICH GENERATES INFINITELY MANY
CONGRUENCE IDENTITIES

Bau-Sen Du

Institute of Mathematics, Academia Sinica, Taipei, Taiwan 11529, ROC
(Submitted March 1987)

1. Introduction

Let ¢(m) be an integer-valued function defined on the set of all positive
integers. If m = pf1p§2 . pﬁf, where the p;'s are distinct prime numbers, r
and the k;'s are positive integers, we define &,(1, ¢) = ¢(1) and

010m, 9) = 6(m) = 3 oGilp,) + T oG/, b, )
z z

1= 7,1<’Lz

- X om/p, b, p, )+ e+ (CTOm/ (P, -e- P
1 %2 %3

’i1<i2<i3

where the summation 2:i1<i2<o--<ij is taken over all integers Z;, Tps «..5 Lj
with 1 < ) <2y < +ee < T; <.
If m= ZkopflpSQ... pff, where the p,'s are distinct odd prime numbers, and

k, =2 05 r, and the k;'s = 1 are integers, we define, similarly,
0 7 g

r
o (ms ¢) = 0(m) = ¥ ¢(m/p,) + X ¢m/(p, p; ))
i=1

i1<i2
- L smlp, p, p, ) * eee (1) 00m/(pypy --- P
1)< 1, < 1, o273
If m = 2%, where k 2 0 is an integer, we define
o, (ms ¢) = ¢(m) - 1.

If, for some integer n > 2, we have ¢(m) = n™ for all positive integers m, then
we denote ¢;(m, ¢) by ¢;(m, n), © = 1, 2, to emphasize the role of this integer
n.

On the other hand, let S be a subset of the real numbers and let f be a
function from S into itself. For every positive integer n, we let f" denote
the nth iterate of f: f1 =f and f"=f o f*! for n 22. For every x5 €S, we
call the set {fk(xo)lk > 0} the orbit of z, under f. 1f xy satisfies f™(xg) =
xy for some positive integer m, then we call x; a periodic point of f and
call the smallest such positive integer m the minimal period of xy and of the
orbit of xy (under f). Note that, if x; is a periodic point of f with minimal
period m, then, for every integer 1 < k < m, fX(xy) is also a periodic point of
f with minimal period m and they are all distinct, so every periodic orbit of f
with minimal period m consists of exactly m distinct points. Since it is obvi-
ous that distinct periodic orbits of f are pairwise disjoint, the number (if
finite) of distinct periodic points of f with minimal period m is divisible by
m and the quotient equals the number of distinct periodic orbits of f with
minimal period m. This observation, together with a standard inclusion-exclu-
sion argument, gives the following well-known result.
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Theorem 1: Let S be a subset of the real numbers and let f:S5 + S be a map-
ping with the property that, for every positive integer m, the equation f™(x) =
x (or ~-x, respectively) has only finitely many distinct solutions. Let ¢ (m)
(or Y(m), respectively) denote the number of these solutions. Then, for every
positive integer m, the following hold.

(1) The number of periodic points of f with minimal period m is ®l(m s ). So
&, (m, ¢) = 0 (mod m).

(ii) If 0 € S and f is odd, then the number of symmetric periodic points (i.e.,
periodic points whose orbits are symmetric with respect to the origin) of
f with minimal period 2m is ®,(m, V). Thus, ¢,(m, Y) = 0 (mod 2m) .

Successful applications of the above theorem depend of course on a knowl-
edge of the function ¢ or Y. For example, if we let S denote the set of all
real numbers and, for every integer n = 2 and every odd integer ¢t = 2k + 1 > 1,
let

14

ful@) = ay« fl @ - 5
and let !
k
g, (x) = by x_Hl(mZ - 7%,
=

where a, and b, are fixed sufficiently large positive numbers depending only on

m and ¢, respectively. Then it is easy to see that, for every positive in-
teger m, the equation fﬂ%x) = [gf@r) = -x, resp.] has exactly n™ (t™, resp.)
distinct solutions in S. Therefore, if ¢(m, n) = n™ and Y(m, t) = t™, then we

have as a consequence of Theorem 1 the following well-known congruence iden-
tities which include Fermat's Little Theorem as a special case.

Corollary 2: (i) Let m 2 1 and n 2 2 be integers. Then Ql(m, n) = 0 (mod m).

(ii) Let m = 1 be an integer and let » > 1 be an odd integer.
Then ¢2(m, n) = 0 (mod 2m).

In this note, we indicate that the method introduced in [1] can also be
used to recursively define infinitely many ¢ and ¥ and thus produce infinitely
many families of congruence identities related to Theorem 1. In Section 2, we
will review this method, and to illustrate it we will prove the following
result in Section 3.

Theorem 3: For every positive integer n 2 3, let ¢, be the integer-valued
function on the set of all positive integers defined recursively by letting
¢,(m) = 2™ -1 for all 1 <m <n - 1 and

v
o

n-1
b,(n + k - j), for all k
J=1

6, (n + k) =

"
o

Then, for every positive integer m, @;(m, ¢,) (mod m). Furthermore,

lim[log @, (m, ¢,)]1/m = %%m[log b, (m)1/m = log oy,

o ©

where o, is the (unique) positive (and the largest in absolute value) zero of
the polynomial
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Note that in the above theorem these numbers ¢,(m), m > 1, are generalized
Fibonacci numbers [3, 4] and when n = 3, these numbers ¢3(m), m = 1, are the
well-known Lucas numbers: 1, 3, 4, 7, 11, 18, 29,

Just for comparison, we also include the following two results which can be
verified numerically. The rigorous proofs of these two results which are
similar to that of Theorem 3 below can be found in [1l, Theorem 2] and [2, Theo-
rem 3], respectively.

Theorem 4: For every positive integer n > 2, let sequences
Pr,1,4,n7s br,2,4,n05 1 <J <,

be defined recursively as follows:
bl,l,j,n=o’ 1Sj.<_7’l,
bZ,l,j,n=]-’ 1 <4 <mn,
by, 2,5, n =b2,2,j’n =0, 1<j<n-1,
bl, 2, n,n =b2, 2,n,n = L.

For 2 = 1 or 2, and k > 1,

brv2,i,4,n = Pr,i,1,n ¥ Pr,i, 41,00 1 S J <m -1,
br+2,i,n,n = Pryi,1,n + Drsl, i,n,n-

Let bg,1,5,n» = 0 for all -2n + 3 < k <0 and 1 < j <#n, and for all positive

nintegers m, let

n
(bn(m) = bm,z,n,n + 2 .Zlbm+2‘2j5 Ljg,n*
i=

Then, for every positive integer m, Ql(m, ¢n) = 0 (mod m). Furthermore,

%%m[log oy (my ¢,01/m = %{QJlOg b,(m)]/m = log B,

where B, is the (unique) positive (and the largest in absolute value) zero of
the polynomial x27+l - 2x27-1 - 1,

Remark 1: For all positive integers m and n, let

A =0 (2m -1, ¢,)/(2m - 1),

m,n
where ¢, is defined as in Theorem 3 for n = 1 and as in Theorem 4 for 2 < n.
Table 1 lists the first 31 values of Ap,n for 1 < n < 6. It seems that 4, 6, =
2" "=l for m+ 1 <m < 3n+ 2 and 4y, > 2" "L for m > 3n + 2. 1If, for all
positive integers m and n, we define sequences <B, , ;> by letting

Bm,n,l = Am+3n+2,n - 2‘4m+3n+l,n

and
B

myon,k = Bm+on+l, n k-1 m+2n+1, n+l, k-1

for ¥ > 1, then more extensive numerical computations seem to show that, for
all positive integers k, we have

(1) By, p,x = 2 for all n = 1,
(ii) By, nyx = 4k for all n = 1,

(iid) B3 n,x is a constant depending only on k, and

[\
S

v
—_

(iv) for all 1 <m < 2n + 1, B = Bm,j,k for all jJ

myn,k
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Theorem 5: Fix any integer n = 2. TFor all integers %, J, and k with < = 1, 2,
1 < IJI <n, and kX > 1, we define Cr,z, i n recursively as follows:

C1,1,nn = land ¢y g jn =0 for j #n,

C1,2,1,» = 1 and ¢} » =0 for j=1.

sds M
For 2 =1, 2, and k 2 1,
Ck+l,4,1,n = Ck,i,1,n t Cryi, -n,n T Cp g on no
Ck+l,4, 4,7 = Ck,2,5-1,n T Ck,i,n,n for all 2 < J < n,
Cr+l,i,-1,n = Ck,i,-1,n T C, i -nn ¥ Cr g n, n
Cr+l, i,-4,n = Ck,i,-+1,n T Cx 4, -n, n for all 2 < J < n.

Let ¢y, 1, j,n = 0 for all integers k, j with 4 - n <k < 0 and 1 < Ijl < n, and,
for all positive integers m, let

n-1
b, (m) = 2k216m+2—k,1,n+1-k,n t 20m11,2,1, 0 — 1
and
n-1
d)n(m) = Zkzlcm+2_k,1, k-n-1,n T 2C’m+1,2,—1,n + 1.

Then, for every positive integer m,
oy (m, ¢,) = 0 (mod m) and o,(m, ¥,,) = 0 (mod 2m).
Furthermore,

%im[log @y (ms ¢,)1/m

lim[log ¢,(m)1/m = lim[log Y, (m)1/m
= lim[log 5 (m, ¥,)1/m = log v,
where Yy, is the (unique) positive (and the largest in absolute value) =zero of

the polynomial z” - 22"" !} - 1.

Remark 2: For all integers m = 1 and n = 2, let

Dm’n = @z(m, ll)n)/(zm),

where the y,'s are defined as in the above theorem. Table 2 lists the first 25
values of Dp,, for 2 < n < 6. It seems that Dy, = 2"" for n <m < 3n, and
Dp,n > 2"°" for m > 3n. 1If, for all integers m > 1 and 7 2 2, we define the
sequences <E, , > by letting

Ern,n,l = Dm+3n,n - 2Dm+3n—1, n
and

Em,n,k = Em+2n, n,k=-1 7 Em+2n, n+l, k-1
for k > 1, then more extensive computations seem to show that, for all positive
integers k, we have

(1) By, pn,x = 2 for all n =2 2,
(i1) Ep p ok = 4tk for all n = 2,
(iii) E3 , k and E are constants depending only on k, and
3, n, L,n,k

(iv) for all 1 <m < 2n, Ep , 3 = Ep ;¢ for all j 2 n = 2.

See Tables 1 and 2 below.
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TABLE 1
m Am,l Am,z Am,3 Am,q Am,s ms 6
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 0 0 0 0 0
4 1 1 1 1 1 1
5 2 1 0 0 0 0
6 2 2 2 2 2 2
7 4 2 1 0 0 0
8 5 3 3 3 3 3
9 8 4 2 1 0 0
10 11 6 6 6 6 6
11 18 8 4 2 1 0
12 25 11 9 9 9 9
13 40 16 8 4 2 1
14 58 23 18 18 18 18
15 90 32 16 8 4 2
16 135 46 32 30 30 30
17 210 66 32 16 8 4
18 316 94 61 56 56 56
19 492 136 64 32 16 8
20 750 195 115 101 99 99
21 1164 282 128 64 32 16
22 1791 408 224 191 186 186
23 2786 592 258 128 64 32
24 4305 856 431 351 337 335
25 6710 1248 520 256 128 64
26 10420 1814 850 668 635 630
27 16264 2646 1050 512 256 128
28 25350 3858 1673 1257 1177 1163
29 39650 5644 2128 1026 512 256
30 61967 8246 3328 2402 2220 2187
31 97108 12088 4320 2056 1024 512
TABLE 2
m Dm,2 Dm’3 Dm,q Dm,S Dm,6
1 0 0 0 0 0
2 1 0 0 0 0
3 2 1 0 0 0
4 4 2 1 0 0
5 8 L 2 1 0
6 16 8 L 2 1
7 34 16 8 4 2
8 72 32 16 8 L
9 154 64 32 16 8
10 336 130 oL 32 16
11 738 264 128 64 32
12 1632 538 256 128 64
13 3640 1104 514 256 128
14 8160 2272 1032 512 256
15 18384 4692 2074 1024 512
16 41616 9730 4176 2050 1024
17 94560 20236 8416 4104 2048
18 215600 42208 16980 8218 4096
19 493122 88288 34304 16464 8194
20 1130976 185126 69376 32992 16392
21 2600388 389072 140458 66132 32794
22 5992560 819458 284684 132608 65616
23 13838306 1729296 577592 265984 131296
24 32016576 3655936 1173040 533672 262740
25 74203112 7742124 2384678 1071104 525824
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2. Symbolic Representation for Continuous Piecewise Linear Functions

In this section, we review the method introduced in [1]. Throughout this
section, let g be a continuous piecewise linear function from the interval [ec,
d] into itself. We call the set {(x;, yi)li =1, 2, ..., k} a set of nodes for
(the graph of) y = g(x) if the following three conditions hold:

(1) k=2 2,

(2) xy; =c¢, X =d, £ < Xy < +++ < X3, and

3) g is.linzar on [x;, xz41] for all 1 <7 <k -1 and y,= g(x;) for all
1 <2 < k.

For any such set, we will use its y-coordinates Yy, Y3 s ..., Y tO represent
its graph and call yiy, ... Y (in that order) a (symbolic) representation for
(the graph of) y = g(x). For 1 << < j <k, we call y;y;41 ... Y; the repre-
sentation for y = g(x) on [x;, x;] obtained by restricting yiys ... Yy to [x;,
x;]. For convenience, we will also call every y; in y y; ... Yx a node. If y,
= y,,1 for some 7 (i.e., g is constant on [x;, x;,;]), we will simply write

Y1 wer Yglivo w00 Uk

instead of

Y1 oo Yelgr1¥ivo oo Yieo
That is, we will delete y;,1 from the (symbolic) representation yiy, -.. Y-
Therefore, every two consecutive nodes in a (symbolic) representation are dis-
tinct. Note that a continuous piecewise linear function obviously has more
than one (symbolic) representation. However, as we will soon see that there is
no need to worry about that.

Now assume that {(x;, y;)|Z =1, 2, ..., k} is a set of nodes for y = g(x)
and a1ay ... a, is a representation for y = g(x) with

{ays ags ooy apl CH{yY1s Y25 «-vs Yz}
and a; # a;4; for all 1 < ¢ <r»r - 1. If

{91’ Yos =ees Y} C {-’Xlls Los eoes :Ck},

then there is an easy way to obtain a representation for y = gZ(x) from the one
aijay ... ap for y = g(x). The procedure is as follows: First, for any two
distinct real numbers u and v, let [u: v] denote the closed interval with end-
points u and v. Then let b; 1bs o ... by, ¢, be the representation for y = g(x)
on [a;: a;+1] which is obtained by restricting ajap ... a, to [a;:a;41]. We
use the following notation to indicate this fact:

a;a; . bi,lbi,z ve bisti (under g) if a; < a; ;s
or

a;q; 41 i

> b; 4, .- b

The above representation on [a; : a;41] exists since

ob;,q (under g) if a; > a; ;-

{ay, ays eoes apt Clay, 25 ooy x)e

Finally, if a; < a;41, let z; ; = b; 7 for all 1 < Jg < t;. If a; > a;+1s let

Ty d

2 = Dby, ¢+1-4 for all 1 < 7 <t

Ty J 7°

Let

7 = Zl,l oo e Zl,t1Z2,2 oo Zz,tz aee Zr,z e Zr,tp'

(Note that z; 4, = 2;41,1 for all 1 <7 < - 1.) Then it is easy to see that 7
is a representation for y = gz(x)n It is also obvious that the above proce-
dure can be applied to the representation Z for y = gz(x) to obtain one for Yy =
g3(x), and so on.
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3. Proof of Theorem 3

In this section we fix an integer n 2 3 and let f,(x) be the continuous
function from the interval [1, n] onto itself defined by

fo@) =ax+1 forl<xs<n-1
and
fu(@) = -(n - Dx + n2 -m+1 forn-1c<zx < n.

Using the notations introduced in Section 2, we have the following result.

Lemma 6: Under f,, we have
k(k +1) ~ (k+ 1)k + 2), k <n -2, if n > 3,
(k + Dk > (kK + 2)(k + 1), k
(n - Lin»n(l), n(n - 1) > (1)n,
n(l) (Dn(m - 1) ... 432, ()n > 234 ... (n - L)n(l).

IN

¥
IA
IA

n -2, if n > 3,

¥

In the following, when we say the representation for y = ff(x), we mean the
representation obtained, following the procedure as described in Section 2, by
applying Lemma 6 to the representation 234 ee. (n - n(l) for y = f,(x) suc-
cessively until we get to the one for y = f (x).

For every positive integer k and all 1ntegers i, § with 1 <4, j <n -1,
let Ak, 4, i, n denote the number of wv's and vu's in the representatlon for y =
f}(x) whose correspondlng x-coordinates are in the dinterval [Z, 7 + 1], where
w = 1ln if § =1, and wv = j(j + 1) if 2 < j <n - 1. It is obvious that

Ay i iel,n = 1 for all 1 <72 <n -2,

ay, n-1,1,n = 1> and Ay i, 5, = 0 elsewhere.
From the above lemma, we find that these sequences <ak i, ,> can be computed
bl 5
recursively.

Lemma 7: For every positive integer k and all integers 7 with 1 < 7 < n-1, we
have

ak+l,i,1,n = ak,i,l,n + ak,i,n—l,n’

A+1, i,2,n = %k, 1,1, 0
= < 7 < - i
ak"'l,iaja” ak>i>15n+ak,i9j_1)n’3_'7‘” 1if »n > 3.
It then follows from the above lemma that the sequences <ay ; ; > can all
be computed from the sequences <ay n-1, j,n
3 3 2

Lemma 8: For every positive integer k and all integers j with 1 < j <n -1, we
have
Ukyn-1, Gon = Fkwiyn-1-4, j,n’
For every positive integer k, let

n-1

-
Cron = L% i 1,n T X
=1 =2

bl

Then it is easy to see that c¢; , is exactly the number of distinct solutions of
the equation f%(x) in the interval [1, n]. From the above lemma, we also
have, for all k =1, the identities:
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-2 n-3
Cron = 22 Tkeiin-1, 1,n T 20 Tk n-l,m-1-4,n

=0 =0
provided that ap -1, 5,» = 0 for all m < 0 and J > 0. Since, for every posi-
tive integer k,

A n-1,1,n = %=1, n-1, 1,n T F%-1,n-1,n-1, n

Tk-1,n-1, L,n T Qk~2,n-1, 1,n ¥ Ak-2,n-1, n-2,n
= dg-1,n-1,1,n T Ak=-2,n-1,1,n T Qk-3,n-1, 1, n

+
A -3, n-1, n-3, n

n-1
= a
igl k-<,n-1, 1, n
and
n=2 n-3
Cr,n T ‘}: Qegyn-1,1,n T _Z Ap-i,n-1, n-1-i,n
=0 =0
n-2
=q + +
kon=L 1,n © Yk-Lin-1,1,n &, %-din-1, 1,n

A1, 1,0 T %o, n-1,n-2,n

~i,n-1,n-1-4,n

-2

n
= An-1, 1,0 T 21, m-1, 1,0 iy_‘dzak—i,n—l, 1, n

n=3

20 a1, me2,n T ,}:zak—i,n—l,n—l—i,n
P

n=2
L+ 1
:L;O(7’ % i ne1,1,m

provided. that «
k<n-1 and

A

mon=1,1,n = 0 if m < 0, we obtain that Cruon = 2k — 1 for all 1

n-1
Crin =iz;1ck"i’” for all integers k 2 n.

1f, for every positive integer m, we let ¢,(m) = ¢y, ,, then, by Theorem 1, we
have ¢1(m, ¢,) = 0 (mod m). The proof of the other statement of Theorem 3 is
easy and omitted (see [3] and [4]). This completes the proof of Theorem 3.
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