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1. Introduction 

Let $(m) be an integer-valued function defined on the set of all positive 
integers. If m = p^lp\2 • •• p^r» where the p^Ts are distinct prime numbers, r 
and the k^ ! s are positive integers, we define $-,(1, (j>) = (f)(1) and 

r 
$l(rn> <f>) = $(m) - £ ^(m/p^) + £ <!>(&/(p. p. )) 

i = l 1 ^2 

£ *(/TZ/(P p p. )) + ... + (-Dr*W(o? ... PP)), 
1̂ < ^2 < "̂ 3 

where the summation H^ < ̂  < ... < ̂ . is taken over all integers £,, 
with 1 < i^ < i^_ < ' ' ' < in - r* 

If 77? = 2 °Pilp2
2 ••• Vrr ' w n e r e t n e Pi ? s a r e distinct odd prime numbers, and 

/<0 > 0, P, and the /c^!s > 1 are integers, we define, similarly, 

<D20?, cf>) = of)(77?) - £ tim/pt) + £ c()(77?/(pi p^ )) 
•̂  = 1 ix < i2 1 2 

E *(^/(p. ?. p. )) + '•• + (-DPc()(7??/(p1p2 ... .p )). 
^ < i2 < i3 ^ ^ *3 

If m = 2k
r where k > 0 is an integer, we define 

$2(777, (|>) = (|>(77?) " 1. 

If, for some integer n > 2, we have (J)(77?) = nm for all positive integers 77?, then 
we denote $^(T?7, </>) by $̂ (77?, n) , £ = 1, 2, to emphasize the role of this integer 
n. 

On the other hand, let S be a subset of the real numbers and let / be a 
function from S into itself. For every positive integer n, we let fn denote 
the nth iterate of f : fl =f and fn=f<> fn~l for n > 2. For every #0

 G s > w e 

call the set {fk(xQ)\k > 0} the orbit of xQ under /. If XQ satisfies fm{x$) = 
XQ for some positive integer 77?, then we call XQ a periodic point of / and 
call the smallest such positive integer m the minimal period of XQ and of the 
orbit of #0 (under f). Note that, if XQ is a periodic point of / with minimal 
period 77?, then, for every integer 1 < k < 777, fk(x§) is also a periodic point of 
/ with minimal period 77? and they are all distinct, so every periodic orbit of f 
with minimal period m consists of exactly 777 distinct points. Since it is obvi-
ous that distinct periodic orbits of / are pairwise disjoint, the number (if 
finite) of distinct periodic points of / with minimal period 77? is divisible by 
??? and the quotient equals the number of distinct periodic orbits of f with 
minimal period m. This observation, together with a standard inclusion-exclu-
sion argument, gives the following well-known result. 
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Theorem 1: Let S be a subset of the real numbers and let f : S + S be a map-
ping with the property that, for every positive integer m, the equation fm(x) = 
x (or -x9 respectively) has only finitely many distinct solutions. Let $(m) 
(or ip(m) , respectively) denote the number of these solutions. Then, for every 
positive integer m, the following hold. 

(i) The number of periodic points of / with minimal period m is M m , (J)) . So 
^ (m, cj)) = 0 (mod 777) . 

(ii) If 0 G S and / is odd, then the number of symmetric periodic points (i.e., 
periodic points whose orbits are symmetric with respect to the origin) of 
/ with minimal period 2m is ^(m, ^) . Thus, ^ o ^ 5 40 E 0 (mod 2m). 

Successful applications of the above theorem depend of course on a knowl-
edge of the function (J) or ty . For example, if we let S denote the set of all 
real numbers and, for every integer n > 2 and every odd integer t = 2k + 1 > 1, 
let 

/n(*) = an • ft (x - j) 
J = I 

and let 

# (x) = bt • x H (x2 - j2), 
J = 1 

sphere an and bt are fixed sufficiently large positive numbers depending only on 
n and t, respectively. Then it is easy to see that, for every positive in-
teger m, the equation f™(x) = x [g™(x) = -x9 resp.] has exactly nm (tm, resp.) 
distinct solutions in S* Therefore, if <J)(m, ri) = nm and ty(rn9 t) = tm, then we 
have as a consequence of Theorem 1 the following well-known congruence iden-
tities which include Fermatfs Little Theorem as a special case. 

Corollary 2: (i) Let m > 1 and n > 2 be integers. Then ^(m, ri) E 0 (mod m) . 

(ii) Let m > 1 be an integer and let n > 1 be an odd integer. 
Then §^(jn> ri) = 0 (mod 2m). 

In this note, we indicate that the method introduced in [1] can also be 
used to recursively define infinitely many <f> and 0 and thus produce infinitely 
many families of congruence identities related to Theorem 1. In Section 2, we 
&rill review this method, and to illustrate it we will prove the following 
result in Section 3. 

Theorem 3: For every positive integer n > 3, let cf>n be the integer-valued 
function on the set of all positive integers defined recursively by letting 
<(>n(m) = 2m - 1 for all 1 < m < n - 1 and 

n- 1 

Mn + fe) = E * » ( w + fe - J)» for all fc > 0. 
J = I 

Then, for every positive integer m, ^ ( m , <J>n) = 0 (mod m) . Furthermore, 

lim[log ^ ( m , (f)n)]/m = lim[log (f)n(m)]/m = log a n , 
m -> 00 -1 m + & 

where an is the (unique) positive (and the largest in absolute value) zero of 
the polynomial 

n-2 
%n~l ~ E xk-

k = 0 
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Note that in the above theorem these numbers $n(m), m > 1, are generalized 
Fibonacci numbers [3, 4] and when n = 3, these numbers 3̂(777), m- > 1, are the 
well-known Lucas numbers: 1, 3, 4, 7, 11, 18, 29, ... . 

Just for comparison, we also include the following two results which can be 
verified numerically. The rigorous proofs of these two results which are 
similar to that of Theorem 3 below can be found in [1, Theorem 2] and [2, Theo-
rem 3], respectively. 

Theorem 4: For every positive integer n > 2, let sequences 

<*&., 1, j,n>» <£fc,'2, J,»>> I < j < n9 

be defined recursively as follows: 

* l , 1, j,n = 0 , 1 < j < ns 

^2, i , j , n = 1, 1 < j < n, 

bl, 2,j,n = t>2,2,j,n = °> 1 < J < W - 1 , 

^ 1 , 2 , n , n = ^ 2 , 2 , n 3 n = ! • 

F o r i = 1 o r 2 , a n d fc > 1 , 

bk + 2,i,j,n = hk9i, 1, n + * / c , i , j + l ,n» 1 < J < H - 1 , 

®k + 2, i, n} n ~ &k, i , 1, n + "k + l, i, n, n • 

L e t bj<^iyjyn = 0 f o r a l l - 2 n + 3 < fc < 0 a n d 1 < j < n , a n d f o r a l l p o s i t i v e 
n i n t e g e r s m, l e t 

n 
4>n(ni) = bm,2,n,n + 2 • L bm + 2-2ji l,j,n' 

J = 1 

Then, for every positive integer m, (̂777, (j)n) = 0 (mod m) . Furthermore, 

l i m [ l o g ^ O ? , <t>n)]/m = l i m [ l o g $ (m)]/m = l o g $ n , 
m •> 00 m -> 00 

where $„ is the (unique) positive (and the largest in absolute value) zero of 
the polynomial ic2n+1 - 2a:2n""1 - 1. 

Remark 1: For all positive integers 777 and n, let 

Amsn = ̂ (2777 - 1, <j)n)/(2777 - 1), 

where <j)n is defined as in Theorem 3 for n = 1 and as in Theorem 4 for 2 < n. 
Table 1 lists the first 31 values of Am^n for 1 < n < 6. It seems that Am^n = 
2OT_n_1 f o r n + 1 < m < 3n + 2 and ^OT?n > 2™-"-1 for 77? > 3n + 2. If, for all 
positive integers m and n, we define sequences <Bm^n^k> by letting 

Bm,n,l = ^m + 3n + 2? n " ^m + 3n + l, n 
and 

Bm,n,k = Bm + 2n + l, n,k-l ~~ Bm + 2n+1, n + l3 fe -1 

for fe > 1, then more extensive numerical computations seem to show that, for 
all positive integers ks we have 

(i) Bl, n,k = 2 f o r a 1 1 n - ls 

(ii) 52? n? k = 4fe for all n > 1, 

(iii) 5 3 „ ^ is a constant depending only on k, and 

(iv) for all 1 < 777 < In + 1, Bm^ n^k = Bm^-^k for all j > n > 1. 
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Theorem 5: Fix any in t ege r n > 2. For a l l i n t e g e r s i , j , and k with i = 1, 2, 
1 < Ijl < n, and fe > 1, we define c. . . „ r e c u r s i v e l y as fo l lows: 

°1, 1, n, n- = 1 a n d £]., ' 1, j , n = 0 f o r J * ^> 
c l , 23 1, n = l a n d c l 5 2 , j , n = 0 f o r J * 1 . 

For i = 1, 25 and fe > 1, 

c / c + l ? £, 1, n = ^fe, i , 1, n + ckyi, -n,n + ck, i, n,n> 

Ck+l,i9 j,n = °k,i, j - 1 , n + * * , * , „ , „ f o r a 1 1 2 < J < n , 

^/c + 1, i , - 1 , n = c f e , i , - 1 , n + c k , i , - n , n + c k , ^ n , n 9 

Ck + 1, i,-j, n = Oki i,-j+l9 n + Ck,i, -n, n f o r a 1 1 2 < J < tt. 

Let c^ x j, n = 0 f° r a H integers fc, j with 4 - n < k < 0 and 1 < \j\ < n5 and, 
for all positive integers 777, let 

n- 1 
M^ * 2 E Gm+2-k,l,n+l-k,n + 2 ^ + l,2,l,n ~ X 

fc = l 
and 

n- 1 
*n^) = 2T,Gm + 2-k,l,k-n-l,n + 2^m + l,2,-l5n + l -

k = 1 

Then, for every positive integer 77?, 

$1(777, (()„) E 0 (mod 777) and $ 2 ^ ' ^n) E 0 (mod 2???). 

Furthermore, 

lim[log $i(m, c()n)]/77z = lim[log <bn(m)]/m = lim[log tyn(m)]/m 
m -> 00 777 -> 00 m - > o o 

= limjlog $2(^» *n)]/^ = 1°§ Yn
5 

where yn Is t n e (unique) positive (and the largest in absolute value) zero of 
the polynomial xn - 2xn_1 - 1. 

Remark 2: For all integers m > 1 and n > 2, let 

where the i|̂ n's are defined as in the above theorem. Table 2 lists the first 25 
values of Dm, n for 2 < n < 6. It seems that Dmy n = 2m~^ for n < m < 3n, and 
Dm,n > 2m~n for m > 3n. If, for all integers TT? > 1 and n > 2, we define the 
sequences <£7m n /c> by letting 

^m, n, I = ^m + 3n, n ~ ^m + 3n - 1, n 
and 

Em,n,k = Em + 2n, n, k-\ ~ Em + 2n, n + l, k-l 

for fc > 1, then more extensive computations seem to show that, for all positive 
integers k3 we have 

(!) El,n,k = 2 for all n > 2, 

(ii) £,23 n, ̂  = ^^ f o r all n > 2, 

(iii) ^3 n ^ and E^ n k are constants depending only on fe, and 

(Iv) for all 1 < 77z < 2n, ̂ m,n,k = #*,,,/,*: f o r all j > n > 2. 

See Tables 1 and 2 below. 
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TABLE 1 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Am, 1 

1 
1 
1 
1 
2 
2 
4 
5 
8 

11 
18 
25 
40 
58 
90 

135 
210 
316 
492 
750 

1164 
1791 
2786 
4305 
6710 

10420 
16264 
25350 
39650 
61967 
97108 

Am,2 

1 
1 
0 
1 
1 
2 
2 
3 
4 
6 
8 

11 
16 
23 
32 
46 
66 
94 

136 
195 
282 
408 
592 
856 

1248 
1814 
2646 
3858 
5644 
8246 

12088 

m , 3 

1 
1 
0 
1 
0 
2 
1 
3 
2 
6 
4 
9 
8 

18 
16 
32 
32 
61 
64 

115 
128 
224 
258 
431 
520 
850 

1050 
1673 
2128 
3328 
4320 

^ m , 4 

1 
1 
0 
1 
0 
2 
0 
3 
1 
6 
2 
9 
4 
18 
8 

30 
16 
56 
32 

101 
64 

191 
128 
351 
256 
668 
512 

1257 
1026 
2402 
2056 

m, 5 

1 
1 
0 
1 
0 
2 
0 
3 
0 
6 
1 
9 
2 

18 
4 
30 
8 

56 
16 
99 
32 

186 
64 

337 
128 
635 
256 

1177 
512 
2220 
1024 

m 3 6 

1 
1 
0 
1 
0 
2 
0 
3 
0 
6 
0 
9 
1 

18 
2 

30 
4 
56 
8 

99 
16 

186 
32 

335 
64 

630 
128 

1163 
256 

2187 
512 

TABLE 2 

Dm,2 

1 
2 
3 
4 
5 
6 
:-7 
8 
9 

10 
11 
12 
13 
14 
15 
16 ' 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0 
1 
2 
4 
8 

16 
34 
72 

154 
336 
738 

1632 
3640 
8160 
18384 
41616 
94560 

215600 
493122 
1130976 
2600388 
5992560 

13838306 
32016576 
74203112 

0 
0 
1 
2 
4 
8 

16 
32 
64 

130 
264 
538 

1104 
2272 
4692 
9730 

20236 
42208 
88288 
185126 
389072 
819458 
1729296 
3655936 
7742124 

0 
0 
0 
1 
2 . 
4 
8 

16 
32 
64 

128 
256 
514 

1032 
2074 
4176 
8416 

16980 
34304 
69376 
140458 
284684 
577592 

1173040 
2384678 

0 
0 
0 
0 
1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2050 
4104 
8218 

16464 
32992 
66132 

132608 
265984 
533672 

1071104 

0 
0 
0 
0 
0 
1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8194 

16392 
32794 
65616 

131296 
262740 
525824 
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2. Symbolic Representation for Continuous Piecewise Linear Functions 

In this section, we review the method introduced in [1], Throughout this 
section, let g be a continuous piecewise linear function from the interval [a, 
d] into itself. We call the set {(xi} 2/̂ ) K = 1> 2, . .., k} a set of nodes for 
(the graph of) y = g(x) if the following three conditions hold: 

(1) k > 2, 
(2) Xi = os Xfr = d, Xi < X2 < eeo < ̂ ^3 and 
(3) g is linear on [xi, #£+il for all I ^ i < k - I and z/̂  = g(x^) for all 

1 < i < L 
For any such set, we will use its ^-coordinates z/]_, 1/2, . . . , y^ to represent 
its graph and call 2/12/2 • • • Uk ^ n t n a t order) a (symbolic) representation for 
(the graph of) y = g(x) . For 1 < i < j < fe, we call y^yi+i . .. 2/j the repre-
sentation for z/ = g(x) on [#£, xj] obtained by restricting 2/12/2 ••• 2/k to [#£ , 
^ • ] . For convenience, we will also call every y^ in 2/12/2 ... 2/̂  a node. If yi 
= 2/̂ +1 for some i (i.e., ^ is constant on [x^, %i+i]) > w e will simply write 

2/! . . . 2 / ^^+2 . - • yk 

instead of 

2/1 ••• 2/i2/i+iJ/i + 2 '•• 2/fc" 
That is, we will delete 2/̂ +1 from the (symbolic) representation 2/12/2 ... 2/fc • 
Therefore, every two consecutive nodes in a (symbolic) representation are dis-
tinct. Note that a continuous piecewise linear function obviously has more 
than one (symbolic) representation. However, as we will soon see that there is 
no need to worry about that. 

Now assume that {(x^9 2/̂ )1 i ~ 1> 2, ..., k} is a set of nodes for y = g(x) 
and a^2 ... aP is a representation for y = g(x) with 

{a x , a2* . - . , ar} c {z/i, zy25 . . . , 2/zJ 
and a^ * a^ + i for a l l i < i < r - I* If 

{2/i? 2/25 • • " 5 2/k} -̂ 1^15 ̂ 2' •••» *̂fc}» 
then there is an easy way to obtain a representation for 2/ = g^(x) from the one 
a^2 . . . ccr for y = g(x). The procedure is as follows: First, for any two 
distinct real numbers u and v9 let [u : V] denote the closed interval with end-
points u and v. Then let £>£, !&•£, .2 ••• ^i? t; b e t n e representation for 2/ = ^(x) 
on [a^ : a^ + il which is obtained by restricting a^2 • •• ar to [a-c : a^ + i]. We 
use the following notation to indicate this fact: 

aiai + l + b i , l h i , l «** h i , t i (under gO if ai < ai + 1, 
or 

a;a;+l * bi, tt ••• &i,2^i, l (under 9) i f «i > ai + 1 . 
The above representation on [a^ : a^+i] exists since 

Finally, if a{ < a^ + i, let zisj = £i?J- for all 1 < j < t€. If a{ > a^ + i, let 

* W = & i , *i+l"J f ° r a 1 1 l ~ $ - t i ' 
Let 

Z = sl j ] L 3 e« ^ 1 ^ ^ 2 , 2 °*°  S 2 5 t 2
 e6B Sr3 2 *°°  ^r,**-

(Note that zi t . = s^+i i for all 1 < £ < Z > - 1 . ) Then it is easy to see that Z 
is a representation for y = g2(x)» It Is also obvious that the above proce-
dure can be applied to the representation Z for y = g2(x) to obtain one for y = 
g3(x), and so on. 
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3, Proof of Theorem 3 

In this section we fix an integer n > 3 and let fn(x) be the continuous 
function from the interval [1, n] onto itself defined by 

fn (x) = x + 1 for 1 < x < n - 1 
and 

fn(x) = -in - l)x + n1 - n + 1 for n - 1 < x < n. 
Using the notations introduced in Section 2, we have the following result. 

Lemma 6: Under fn, we have 

k(k + 1) -> (k + l)(k + 2), 2 < fc < n - 2, if n > 3, 

(fc + l)fc -> (fc + 2)(fc + 1), 2 < fc < n - 2, if n > 3, 

(n ~ \)n •> n(l), n(n - 1) -> (l)n, 

n(l) •> (l)n(n - 1) ... 432, (l)rc -> 234 ... (n ~ l)rc(l). 

In the following, when we say the representation for y = fn (x), we mean the 
representation obtained, following the procedure as described in Section 2, by 
applying Lemma 6 to the representation 234 . .. (n - l)n(l) for 2/ = fn(x) suc-
cessively until we get to the one for y = f^(x) . 

For every positive integer k and all integers £, j with 1 < i, j < n - 1, 
let ay. i • n denote the number of uv * s and vu1 s in the representation for 2/ = 
f^(x) whose corresponding x-coordinates are in the interval [£, £ + 1], where 
uv = In if j = 1, and wz; = J(J + 1) if 2 < j < n - 1. It is obvious that 

a1? . ? i + l j n = 1 for all 1 < t < n - 2, 

al,n-l, 1, n = ls a n d a l ? i 3 j ? n = °  elsewhere. 
From the above lemma, we find that these sequences <ah > . „> can be computed 
recursively. 

Lemma 7: For every positive Integer k and all integers £ with 1 < £ < n - 1, we 
have 

afc + l, i, 1, n = a](,i, 1, n + a k 3 i , n-1, n9 

ak + l, i,2,n = ak, i , 1, ns 

a, , T • • = a7 • T + a7 . . , „, 3 < j ^ n - 1 if « > 3. 

It then follows from the above lemma that the sequences <(^k,iy j n> c a n a ^ 
> . 

J5 
be computed from the sequences <av „ -r . > 

Lemma 8: For every positive Integer fc and all integers j with 1 < j <n-l, we 
have 

ak,n-l, j,n = ak + i,n-l-i,j,n> l S * * M " 2' 

For every positive integer /c, let 

n - 1 w - 1 
^7 = y* a, . 1 + y* a7 . . 

Then it is easy to see that ck n is exactly the number of distinct solutions of 
the equation f%(x) = x in the Interval [1, n] . From the above lemma, we also 
have, for all k > 1, the identities: 
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n-2 n-3 
ck,n = 12 a k - i , n-1, l,n + 12 a k - i , n- 1, n- 1 - £, n 

i = 0 ' £ = 0 

provided that CLm n-l j n ~ 0 f ° r a H ^ - 0 and j > 0. Since, for every posi-
tive integer fc, 

ak,n-l, 1, n = ak-l, n-1, 1, n + ak - 1, n - 1, n - 1, n 
= a k - l , n - l , 1, n + ak-2, n - 1 , 1 , n + ak~Z, n- 1, n - 2 , n 

= < Z f c - l , n - 1 , 1 , n + ak-2, n-1, 1, n + G f c - 3 , n - 1 , 1, n 

+ a 7 . . . • 
k - 3 , n - 1 , n - 3 , n 

n- 1 

and 
J-4, k- ^ , n - l , 1, n ^ = 1 

n - 2 n - 3 
c k , n = S a/c-£, n-1, 1, n + 2 ak-£, n-1, n-1- £, n 

£ = 0 ^ = 0 

n - 2 
= ^7 i -, + a-, i i i + 12 ai • ' i i 

fc, n - 1, l , n & - 1, n - 1, l , n £ ~ 2 K ^ , n - 1 , 1 , n 

+ a k - l , n - 1 , 1 , n + a k - l , n - 1 , n - 2 , n 

n - 3 
+ 12 a 7 • i i • 

^ ^ _ t>5 n - 1 , n - 1 - i , n 

a f c , n - l , l , n + 2 a / c - l , n - l 5 1, n + J2 a k - i , n - 1 , 1, n 
^ = 2 

n - 3 
2 a / c - l , n - 1 , n - 2 , n + i-> a k - £ , n - 1, n - 1 - i , n 

£ = 2 

n - 2 
= 12 (t + !)a7 . 

provided that am n _1 x n = 0 i f 777 < 0 , we o b t a i n t h a t ( ? k ? n = 2fe - 1 f o r a l l 1 < 
k < n - 1 and 

n- 1 
for all integers k > n« °k,n X*,°k-i,n 

^ = 1 

If, for every positive integer m, we let <$>n(m) = cmj„, then, by Theorem 1, we 
have $i(m9 (j)n) = 0 (mod w ) . The proof of the other statement of Theorem 3 is 
easy and omitted (see [3] and [4]). This completes the proof of Theorem 3* 
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Winston-Salem, North Carolina 27109 

International Committee 
Horadam, A.F. (Australia), Co-Chairman Loca l C o m m i t t e e 
Philippou, A.N. (Cyprus), Co-Chairman Fred T. Howard, Co-Chairman 

Ando, S. (Japan) Marceilus E. Waddill, Co-Chairman 
Bergum, G. (U.S.A.) Elmer K. Hayashi 
Johnson, M. (U.S.A.) Theresa Vaughan 

Kiss P. (Hungary) Deborah Harrell 
Filipponi, Piero (Italy) 

Campbell, Colin (Scotland) 

CALL FOE PAPERS 
The FOURTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND 

THEIR APPLICATIONS will take place at Wake Forest University, Winston-Salem, N.C., from 
July 30 to August 3, 1990. This conference is sponsored jointly by the Fibonacci Association and 
Wake Forest University. 

Papers on ail branches of mathematics and science related to the Fibonacci numbers as well as 
recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 
1990. Manuscripts are requested by May 1, 1990. Abstracts and manuscripts should be sent to G.E. 
Bergum (address below). Invited and contributed papers will appear in the Conference Proceedings, 
which are expected to be published. 

The program for the Conference will be mailed to all participants, and to those individuals who 
have indicated an interest in attending the conference, by June 15, 1990. All talks should be limited 
to one hour or less. 

For further information concerning the conference, please contact Gerald Bergum, The Fibo-
nacci Quarterly, Department of Computer Science, South Dakota State University. P„0. Box 2201, 
Brookings, South Dakota 57007-0194. 
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