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1. Introduction

In [1], using the properties of the reciprocity law for Dedekind sums, L.
Carlitz proved that the system

hh'

1
1

1 (mod k), #hh'" = 1 (mod k')

(*)
kk !

1 (mod h), kk' = 1 (mod h'")

has no positive integral solutions unless either kK = k' or h = h'.

In [2], M. DeLeon studied (essentially) solutions of the system (*). He
defines a Carlitz four-tuple (a, b, ¢, ¢) by: a, b, ¢ are integers (not re-
quired to be positive), ab = 1 (mod ¢), ¢2 = 1 (mod a), and ¢2 = 1 (mod b). He
introduces the notion of a primitive Carlitz four-tuple (a, b, ¢, ¢), that is,
one with the property that there exists no integer m > 1 such that one also has
that (a/m, bm, ¢, ¢) is a Carlitz four-tuple. We mention here two of his
results, which are basic to our work in this paper: the Carlitz four-tuple (a,
b, ¢, ¢) is primitive if and only if the greatest common divisor

ged(a, (e¢? - 1)/b) =1,
and secondly, if (a, b, ¢, ¢) is primitive, then g divides b.

In this paper we consider only the positive integral solutions of the sys-
tem (*). Since at most three different integers are involved, we use the nota-
tion (a, b, ¢) for a solution, with ab = 1 (mod ¢), ¢2 =1 (mod a), and ¢2 = 1
(mod b); we call this a Carlitz triple (CT). The results of [2] of course
apply to these triples. A primitive CT will be called a PCT.

In Section 2, we first prove some elementary arithmetic properties of a
PCT, and then prove the following conjecture from [2]:

If (a, b, ¢) is a PCT with a # b, ¢ > 1, ¢ # ab - 1,
then we have: 0 < a < ¢ < b.

In Section 3, we show that the set of all PCT's (a, ax, ¢) with ¢ > 2, and
for a fixed integer x > 3, satisfy a recursive relation. The original recur-
sions (resulting directly from a study of these PCT's) are not very pretty, but
they reduce to a surprisingly simple form.

In Section 4, we give the generating functions associated with the recur-
rences from Section 3; these are rational functions whose denominator is quad-
ratic.

The reader will notice that many of our results are stated with assorted
minor restrictions (e.g., ¢ > 1, or a < b, and so on). In Section 5, we dis-
cuss the reasons for such restrictions. It is then seen that only one inter-
esting case [out of all possible positive solutions to the system (*)] is not
covered. This is the case of those PCT's of the form (a, a, ¢), to which, of
course, the conjecture of DeLeon does not apply. We hope to say more about
these in a later paper.
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2. Elementary Properties

In this section we first develop some of the arithmetic consequences of the
definition of a PCT (a, b, ¢). Recall that a CT is a triple of positive
integers a, b, ¢ satisfying:

a<b
ab = 1 (mod ¢)
c? = 1 (mod a)
¢2 =1 (mod b).
The PCT triples also satisfy the additional conditions
alb

ged(a, (¢2 - 1)/b) = 1.

Lemma 2.1: Let (a, b, ¢) be a PCT with ¢ > 1.

Then there exist integers x, r, u# so that x > 0, u > 0, » 2 0, and
(i) b = ax
(i1) e2 -1 = ax(ue - a), (a, u) = (a, uec - a) = 1

(iii) a2z = 1 + re.

Proof: Since a!b, (i) is true for some x > 0. Then ab = q?x and (iii) fol-
lows since gb = 1 (mod ¢). We know that b = ax divides ¢? - 1, that is, ¢2 - 1
= qxt for some integer ¢; t > 0 since ¢ > 1. Since axt = -1 (mod ¢) and a2y =
1 (mod ¢), then ¢ = -a (mod ¢). We claim that ¢ = ye - a with u a positive in-

teger. If ¢ = 2, this is seen directly: ¢2 -1 =3 = qxt implies that a, «x,
and t can only take on the values 1 or 3. If @ =x =1, then u = 2; if a = 3,
=1, t=1, thenu =2; ifa=1, x =3, t =1, thenu = 1. If ¢ > 2, then
since ¢ = =g (mod ¢) and ¢, a, and ¢ are all positive, then ¢t = yc - a for some
u > 0. Note that r can be 0 if and only if ¢ = b = & = 1; otherwise » > 0. [J

Corollary 2.1: Let (a, b, ¢) be a PCT with ¢ > 1, and suppose the integers x,
r, u are given as in Lemma 2.1. Then (uc¢ - a, x(uc - a), ¢) is also a PCT with
c>1.[0

Remark: Later on, for a given x > 3, we will be considering the set of all
PCT's (a, b, ¢) for which b/a = x. It will be useful to note that, if (a, ax,
¢) is a PCT with ¢ > 2, then one of the two PCT's (a, ax, ¢) and (uc - a,
x(ue - a), ¢) has its left-most member less than ¢. [This follows from Lemma
2.1(ii); a(ue - a) divides ¢2 - 1, so one of the factors must be less than c.]

Lemma 2.2: Let (a, b, ¢) be a PCT with ¢ > 1, and suppose the integers x, r, u
are given as in Lemma 2.1. Then

(i) e =axu - r
(ii) (ru - a)e = ar - u

(iii) (@? - u2) (@2 - 1) = (¢?2 - 1) (ru - a)2.

Proof: From the proof of Lemma 2.1, we have x = b/a, r = (ab - 1)/¢, and u =
(¢?2 - 1 + ab)/be. The result follows easily from these equalities. [J
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Theorem 2.1: Let (a, b, ¢) be a PCT with a > 1 and ¢ > 1, and suppose the in-
tegers x, r, u are given as in Lemma 2.1. Then »r > 1, and (a, b, r) is a PCT.

Proof: First, since a > 1, then a?x = 1 + re¢ > 1 [Lemma 2.1(iii)] and so » > 0.

Now consider Lemma 2.2(ii) with r» = 1. It reduces to (U - a)e=a - u. We
have ¢ > 0, so this implies @ = u. But (a, u) = 1 by Lemma 2.1(ii), and so u =
1 and @ = 1, contradicting the assumption that a > 1; thus » > 1. Next, since

a2z = 1 + re and ¢ = axu - r, then

a?x =1 + r(axzu - r) = 1 + (uax)r - r?

ax(a - ur) = 1 - p?

and so r?2 = 1 (mod @) and 2 = 1 (mod b) (since b = ax).

From Lemma 2.1(iii) we already have ab = q?x = 1 (mod r). It remains to
show that (a, b, r) is primitive, that is (see [2]), that
1.

ged(a, (¥?2 - 1)/ax) = ged(a, ru - a) =
From Lemma 2.1(ii) and the fact that (a, b, ¢) is primitive, we have
ged(a, u) = 1.
Lemma 2.1(iii) implies that
ged(a, r) = 1.
Then ged(a, ru - a) = 1 also. [J

The following theorem settles the conjecture of DeLeon in the affirmative.

Theorem 2.2: Let (a, b, ¢) be a PCT with 0 < a < b and ¢ > 1. 1If a < ¢, then
b > c.

Proof: First, if a = 1, then we have, by Lemma 2.1(iii), that a?x = x = 1 + rec.
Since b = qx, and b > 1, then » > 0 and so b =2 ¢ + 1. Thus, the theorem is
true for ¢ = 1 and ¢ > 2. For a > 1, the proof is by descent. (We use the
notation of Lemma 2.1.) Suppose the contrary, and let ¢ be the smallest posi-
tive integer such that there exist integers a, x so that, with b = ax, one has
that (a, b, ¢) is a PCT with @ < ¢ and b < ¢, a < b and ¢ > 1. Note now that,
since we have b > g, then & > 1. Since ax < ¢, then a?x < ac. Then

a?x =1 + re < ac,

and hence r < g. By Theorem 2.1, (a, ax, r) is also a PCT and has r > 1, and
by Corollary 2.1, (a’, b', ¢') = (ru - a, x(ru - a), r) is a PCT. Since a > r,
and since r?2 - 1 = ax(ru - @) then x(ru - a) < r. Thus,

a' <e', b" <e’, a’ <b', and r > 1.
We have r» < a < ax < ¢, which contradicts the minimality of ¢. This completes

the proof. [

Corollary 2.2: Let (a, b, ¢) be a PCT with 0 < a < b, and with ¢ > 1, and sup-
pose the integers x, r, u are given as in Lemma 2.l1. Assume that a < ¢. Then
u=1.
Proof: By Theorem 2.2, ax > ¢, so from Lemma 2.1(ii) it follows that

0 <uc - a < c.

Since a < ¢, then it must be that u = 1. []
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3. The Recursion for PCT's

Consider the set S(t) of all PCT's of the form (a, a (¢t + 1), ¢), where ¢ >
2 and ¢ > 2. 1In this section, we show that for each ¢ > 2, S(t) is a recur-
sively defined sequence of triples, with initial element (1, ¢ + 1, %).

These conditions of course imply that Theorem 2.2 and its Corollary will
apply to all these PCT's. 1In particular, in the notation of Lemma 2.1, for any
PCT (a, b, ¢) in this section we will always have u = 1.

Lemma 3.1: Let (a, b, ¢) be a PCT with a < b and ¢ > 2, and r as defined in
Lemma 2.1. If a < ¢/2, thenr <c¢ - 23 if a > ¢/2, then » > c.
Proof: We use the notation of Lemma 2.1. Note that
(r+1)(c+1)=re+1+2r+ec.
By Corollary 2.2, u = 1 and so, from Lemma 2.2(i), ax = r + c.
By Lemma 2.1(iii), a?x = re¢ + 1. Hence, we have
(r+ D(c+1) = a2z 4+ ax = ax(a + 1).
If a < ¢/2, then a + 1 < ¢ - a. Then,

(r + D+ 1) <ax(c -a) =c2 -1,

which implies that r < ¢ - 2; similarly, if ¢/2 <a < ¢, thena+ 1 >c¢ - a,
and then r > ¢ - 2. Note that a = ¢/2 is not possible if ¢ is odd; if ¢ 1is
even and ¢ > 2, then (a, ¢) = 1 implies that a = ¢/2. [Lemma 2.1(iii) implies

that (a, ¢) = 1.] By Lemma 2.2(ii), since u = 1, we have
(r - a)e =ar - 1,

so that (r, ¢) = 1 and hence » # ¢. It remains to show that » # (¢ - 1). Sup-
pose to the contrary that r» = ¢ - 1. By Lemma 2.2(i) then, ar = 2¢ - 1 > 3.
Since ax must divide ¢2 - 1, while gcd(2¢ - 1, ¢ - 1) = 1, then 2¢ - 1 must
divide ¢ + 1; this is impossible for ¢ > 2. Thus, » # ¢ - 1, and it follows
that r > ¢. [J

Lemma 3.2: Suppose that (a, ax, r) and (a, ax, k) are both PCT's with r, k > 2
and > 3, and that » # k. Then ax = 1 + vk, and » + k = ax.

Proof: By Corollary 2.2, u = 1. Then, from Lemmas 2.1 and 2.2, we must have:

2 -1 =aqax(r - a)

2z = 1 + rm (for some positive integer m)
r+m=ax

ki -1 =aqax(s - a)

r

Q

a’x = 1 + kn (for some positive integer n)
k+n=ax.
Then
e =1+max - m =1+ n(ax - n),
and then
(m - n)ax = m? - n?,

which gives ax = m + n. Then k = m and » = n. [J

Lemma 3.3: 1If (a, ax, ¢) is a PCT with ¢ > 2 and « > 3, and if a%x = 1 + rc,
then r = c.

134 [May



RECURSIONS FOR CARLITZ TRIPLES

Proof: 1If r = 1, clearly r # ¢. Suppose r > l. Since g?x =1 + rc implies that
(a, ) =1 and » > 1, then » # g¢. By Lemma 2.2 and Corollary 2.2,

(r - a)e = ra - 1.
Thus, r and ¢ must be relatively prime. Since ¢ > 1, then »r = ¢. [

Corollary 3.3: Suppose that (a, ax, ¢) is a PCT with ¢ > 2 and x > 3, and with
a2z =1+ rec and @ > ¢/2. Then the PCT (a, ax, r) has » > ¢ and a < »r/2.

Proof: For the PCT (a, b, ¢), Lemma 3.1 says that » > ¢. Applying Lemma 3.1 to
the PCT (a, b, r) completes the proof. []

Remark: Observe that, given any PCT (a, b, ¢) with b/a =2 >3 and ¢ > 2,
there are two more PCT's particularly associated with it, in which the quotient
of the second element by the first is also x, namely

(¢ —a, (¢ -a)x, ¢) and (a, b, r).
By Lemmas 3.1 and 3.2, there are exactly two such triples, and, in the lexico-
graphic ordering of all triples, one of these associated triples is "less than"
(as b, ¢), and the other one is ''greater.”
Example: x = 5; ¢p = 4 =2 - 1; a=1. Then (1, 5, 4) is a PCT;
2 5=1+ 4.

a
Also (3, 15, 4) is a PCT so we have g = 3 and
a?x = 45 =1 + 4x11.

X

[Note that 3 = ¢ - 1, and 11 = c§ -cog-1=c¢cy.]

Now (3, 15, 11) is a PCT (Theorem 2.1). Wishing still to go up, use the
related PCT (8, 40, 11) (Corollary 2.1); then a = 8 and we have

a?c =1+ 11x29.
Put ¢, = 29.
[Note that 8 = 11 - 3 = (¢; - ¢g + 1).]

We now have that (8, 40, 29) and (21, 5x21, 29) are PCT's. With a = 21,
then

20 =1+ 29x 76.
Put cy = 76.

a

[Note that 21 = ¢, — ¢} + ¢y - 1.1
For convenience, we state this rather commonplace observation as a theorem.
Theorem 3.1: The set S(t) of all PCT's (a, a(t + 1), ¢) witha > 0, ¢ > 2, t >
2, is linearly ordered by the lexicographic order:
Ags Ays Ags oues
where Ay = (1, £t + 1, t), and if 4, = (a, a(t + 1), ¢) with a < ¢/2, then
App1 = (e -a, (e - )+ 1), e);
if 4, = (a, a(t + 1), ¢) with a > ¢/2, then
Aps1 = (@, a(t + 1), (@%@ +1) - D/e). [
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The first few members of {Ai} are:

Ao = (1, t+ 1, £)

(t -1, (t - D&+ 1), t)

=(t -1, (t - Dt +1), t2 -t -1)

Ay = (t2 = 2t, (22 - 26)(t + 1), t2 = ¢t - 1).

s
N =
o

Let (xg, 15 %9, ...) be the sequence of the left-hand entries of the 4;,
and define a sequence (a,) as follows:

ao = l, al =t - 1,

and then, for all 2 > 1, a; = Zp; - 1- That is, (a,) 1is the sequence of the
distinct left-hand entries of the triples 4;. We proceed similarly on the

right; it will be convenient to furnish this sequence with an "extra' initial
term:

@0 = l, cy = t, Cop = tz -t - l,
From the definition, we have that
a, =¢, - a,-1 and c,4; = (a2 (t + 1) - 1)/ec,.
Theorem 3.2: For fixed ¢, t > 2, the sequences {a,}and {¢,} defined above sat-

isfy

(1) a,=c, =Cuy + on + (e, 4+ o0+ (1) (n 2 0)

(1) cp41 = (&t + Ve, - 2(2 + Day-y +e,-1 (n 2 1).
Proof: Since ap = 1 = (-1) % then (i) follows by induction from the definition
of {4;1}.
We have ¢y = 1, and ¢; = ¢, so
cp =t? -t -1=(t+1)e - 2(¢t + Dag + cyp-
From the definition of {4;}, if n > 2, we have
w= Ut + 1)(croy = Cpop + ooe + (<12 = 1} e,
[(t+ 1) efy + 2¢,_1(=Cp-n + Cp_3 = -+« + (=1)7"
+ (=Cpop *+ Cuog + oo+ (1)M2 = 11/c,4
(t+ Deyog + 2+ 1)(-cpop + Cyog = -+ + (-1D)7)
+ {(t + 1)(=Cp_p + Cpog = =o» + (-1)™)2 = 1}/c,
(t + Depog + 20t + 1) (~au_1) + {( + D(ay-2)?% - 1} eu-1.
From the definition of {4;}, we know that
{(t + D(an-2)2 - 1¥/ey-p = cu-1>s

and this proves (ii). [J

c

[

]

Using this result, one can establish that the sequences {a,} and {e¢,} do in
fact satisfy recursions of a much simpler nature.

Theorem 3.3: TFor fixed t, t > 2, the sequences {a,} and {c,} satisfy, forn > 1:

(i) Cp-1 + ¢, (t + l)annl
(i1) ap41 = (T - Da, - an-)

(iii) cp41 = @& - ey, —cp-1-
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Proof: 1t is easy to verify that (i), (ii), (iii) are all true for n = 1, 2, 3.
Suppose they are true for all k, 1 < k < n. From Theorem 3.2 and the in-
ductive hypothesis, we have

Cpy1 = (E+ Ve, + 20 + 1) (=an-1) + epo1
(t + e, - 2(e, + cp-1) + cpoy

(t - e, - cy-1-
It then follows that
Cup1 vy = tey = cpoy = (B + Dey = cp = ey

(t + (e, - ap-1) = (t + Day,.

Since a, = ¢, - a,-1, statement (ii) follows from (iii); this completes the
proof. []

4. Generating Functions

It is well known that recursive sequences like {a,} and {¢,} are naturally
associated with generating functions, which may be found and described in a
standard way. In this section we give the generating functions and the corre-
sponding Binet formulas without proof.

Let t be a fixed integer, t > 2, and consider the sequences {a,} and {cn}
defined in Section 3. Define two formal power series by

F(z) = ¥ c;8%; G(3) = 1 azat.
=0 =0

Theorem 4.1: The series defined above satisfy
F(z) = 1+ 2)/(L+ (1L -¢%t)z+22); Gk =F&E/1+2).0

If ¢t = 3, then

22 +2(1 -t) +1=(z-1)2,
while, if ¢ > 3, then 22 + z2(1 - t) + 1 has irrational roots. Thus, we consi-
der two cases separately.
Theorem 4.2: 1f t = 3, then

F(z) = Z(Z + 1)2%;
a,=n+1andc, = 2n + 1. [
Theorem 4.3: Let t > 3, and let o, B be the two roots of 22 + (1 + ¢t)z + 1.
Then o # B, and we have

a, = (an*l - gn*ly/(a - B)
and
e, = (an*l + o, - gn*l - g )/(a - B). O

5. Some Exceptions

In this section we discuss the reasons for the restrictive conditions at-
tached to some of our results. Throughout we use the notation of Lemma 2.1;
(a, b, ¢) is a PCT, a, b, ¢ are positive integers, and so omn.
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A. If ¢ = 1: For all positive a, b, (a, b, 1) is a CT and is primitive if
and only if a = 1.

B. If ¢ = 2: The only PCT's with ¢ = 2 are (1, 1, 2), (1, 3, 2), and (3,
3, 2).

If ¢ > 2, there are no PCT's of the form (a, 2a, ¢) or (a, 3a, ¢).

D. There are PCT's of the form (a, a, ¢), for instance (8, 8, 3). How-
ever, these seem to differ from those with g < b in various essential
ways; in particular, they do not appear to fit into a single recur-
rence scheme. Note that DeLeon's conjecture does not apply to these
PCT's.

Statements (A) and (B) are easily checked. To see (C), suppose first that
(a» 2a, ¢) is a PCT with ¢ > 2. Then, by Theorem 2.2, we have a < ¢ < 2q ;. and
by Corollary 2.2 and Lemma 2.1, we can write

e?2 -1 = 2a(¢ - a) = 2ac ~ 242.
Rearranging, we get
¢? - 2ac +a?> =1 - a?

(¢ - a)2 =1 - a2.

Since ¢ > a, this is positive, contradicting the fact that a > 0. Therefore,
(a, 2a, e¢) can only be a PCT if ¢ =1, 2.

Proceeding similarly with a PCT of the form (a, 3a, ¢) with ¢ > 2, we get
a < ¢ < 3a and

e? -1

3a(e - a)
(e -a)2 =1+ ale - 2a).

Since ¢ > g, this is positive, so ¢ 2 2a. Rearranging the first equation in
another way, we get

e?2 - 3ae + 2a2 =1 - g
(¢ = a)(e - 2a) 2,

Since ¢ > 2a, we must have a = 1. A CT (a, b, ¢) must satisfy ab = 1 (mod ¢)
and ¢2 = 1 (mod a, b). Here we have @ = 1, b = 3; then ab = 1 (mod ¢) implies
¢ < 2. Thus, there are no PCT's with ¢ > 2 and the form (a, 3a, ¢).

1 -a
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