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1. Introduction 

In [1], using the properties of the reciprocity law for Dedekind sums, L. 
Carlitz proved that the system 

hhf = 1 (mod k), Khf E 1 (mod k') 
(*) 

kk' E l (mod h), kkf E l (mod h') 

has no positive integral solutions unless either k = kT or h = hr. 

In [2], M. DeLeon studied (essentially) solutions of the system (*) . He 
defines a Carlitz four-tuple (a, b, c, o) by: a, b9 a are integers (not re-
quired to be positive), ab = 1 (mod c) , c2 E 1 (mod a) , and c2 = 1 (mod £>) . He 
introduces the notion of a primitive Carlitz four-tuple (a, fc, c, c) , that is, 
one with the property that there exists no integer m > 1 such that one also has 
that {aim, bm, c, c) is a Carlitz four-tuple. We mention here two of his 
results, which are basic to our work in this paper: the Carlitz four-tuple (a, 
b, o, o) is primitive if and only if the greatest common divisor 

gcd(a, (c2 - I)lb) = 1, 

and secondly, if (a, bs cs c) is primitive, then a divides b. 
In this paper we consider only the positive integral solutions of the sys-

tem (*). Since at most three different integers are involved, we use the nota-
tion (a, by o) for a solution, with ab = 1 (mod c), c1 E 1 (mod a ) , and c2- E 1 
(mod b); we call this a Carlitz triple (CT) . The results of [2] of course 
apply to these triples. A primitive CT will be called a PCT. 

In Section 2, we first prove some elementary arithmetic properties of a 
PCT, and then prove the following conjecture from [2]: 

If (a, by o) is a PCT with a * by c > 1, c * ab. - 1, 
then we have: 0 < a < c < b. 

In Section 3, we show that the set of all PCT?s (a, ax, o) with o > 2, and 
for a fixed integer x > 3, satisfy a recursive relation. The original recur-
sions (resulting directly from a study of these PCT\s) are not very pretty, but 
they reduce to a surprisingly simple form. 

In Section 4, we give the generating functions associated with the recur-
rences from Section 3; these are rational functions whose denominator is quad-
ratic. 

The reader will notice that many of our results are stated with assorted 
minor restrictions (e.g., o > 1, or a < b, and so on). In Section 5, we dis-
cuss the reasons for such restrictions. It is then seen that only one inter-
esting case [out of all possible positive solutions to the system (*)] is not 
covered. This is the case of those PCT?s of the form (a, a, c) , to which, of 
course, the conjecture of DeLeon does not apply. We hope to say more about 
these in a later paper. 
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2. Elementary Properties 

In this section we first develop some of the arithmetic consequences of the 
definition of a PCT (a, b, c) . Recall that a CT is a triple of positive 
integers a, b, c satisfying: 

a < b 

ab 
c2 

c2 

E 1 
E 1 
= 1 

(mod 
(mod 

c) 
a) 

(mod b) 

The PCT triples also satisfy the additional conditions 

a\b 
gcd(a, (c2 - I)lb) = 1. 

Lemma 2.1: Let (a, b, c) be a PCT with e > 1. 
Then there exist integers x, p, u so that x > 0, u > 0, r > 0, and 

(i) b = ax 
(ii) c2 - 1 = ax(uc - a), (a, u) = (a, uc - a) = 1 
(iii) a2x = 1 + PC. 

Proof: Since a\b, (i) is true for some x > 0. Then aZ? = a2x and (iii) fol-
lows since ab = 1 (mod <?) . We know that b - ax divides c2 - 1, that is, a2 - 1 
= ax£ for some integer £; £ > 0 since e > 1. Since ax£ E -1 (mod <? ) and a2x E 
1 (mod c), then £ = -a (mod c). We claim that t = uc - a with u a positive in-
teger. If c = 2, this is seen directly: o2 - 1 = 3 = ax£ implies that a, x, 
and £ can only take on the values 1 or 3. If a = x = ls then w = 2; if a = 3, 
x = 1, £ = 1, then u = 2; if a = 1, x = 3, £ = 15 then u = 1. If c > 2, then 
since t E -a (mod <?) and £, a, and <? are all positive, then £ = uc - a for some 
u > 0. Note that p can be 0 if and only ±fa=b=x=l; otherwise p > 0. D 

Corollary 2.1: Let (a, 2?, <?) be a PCT with c > 1, and suppose the integers x9 
p, u are given as in Lemma 2.1. Then (uc - a, x(uc - a ) , c) is also a PCT with 
e > 1. D 

Remark: Later on, for a given x > 3, we will be considering the set of all 
PCT's (a, b, c) for which b la = x. It will be useful to note that, if (a, ax9 
c) is a PCT with c > 2, then one of the two PCTfs (a, ax, <? ) and (uc - a, 
x(uc - a), c) has its left-most member less than c. [This follows from Lemma 
2.1(ii); a(uc - a) divides c2 - 1, so one of the factors must be less than c.] 

Lemma 2.2: Let (a, b, c) be a PCT with c > 1, and suppose the integers x9 P, u 
are given as in Lemma 2.1. Then 

(i) c = axu - P 
(ii) (ru - d)c = av - u 
(iii) (a2 - u2)(v2 - 1) = (a2 - I)(ru -a)2. 

Proof: From the proof of Lemma 2.1, we have x = b/a9 v = (ab - 1)/c> and u = 
(c2 - 1 + ab)/bc. The result follows easily from these equalities. • 
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Theorem 2.1: Let (a, b? c) be a PCT with a > 1 and c > 1, and suppose the in-
tegers x, p, u are given as in Lemma 2.1. Then r > 1, and (a, fo, P ) is a PCT. 

Proof: First5 since a > 1, then a2x = 1 + re > 1 [Lemma 2.1(iii)] and so r > 0. 
Now consider Lemma 2.2(ii) with r = 1. Lt reduces to (u - a) £ = a - u. We 
have c > 0, so this implies a = u. But (a, u) = 1 by Lemma 2.1(ii), and so u = 
1 and a = 1, contradicting the assumption that a > 1; thus p > 1, Next, since 
a2x = 1 + re and <? = axu - P, then 

a2x = 1 + r(axu - r) = 1 + (wax)p - P 2 

ax(a - UP) = 1 - P 2 

and so p2 E 1 (mod a) and p2 E 1 (mod b) (since b = ax). 

From Lemma 2.1(iii) we already have ofr = a2x E l (mod p) . It remains to 
show that (a, b, P ) is primitive, that is (see [2]), that 

gcd(a, (P 2 - I)/ax) = gcd(a, ru - a) = 1. 

From Lemma 2.1(H) and the fact that (a, 2?, c?) is primitive, we have 

gcd(a, u) = 1. 

Lemma 2.1(iii) implies that 

gcd(a, p) = 1. 

Then gcd(a, ru - a) = 1 also. • 

The following theorem settles the conjecture of DeLeon in the affirmative. 

Theorem 2.2: Let (a, &, c) be a PCT with 0 < a < b and c? > 1. If a < e9 then 
b > e. 

Proof: First5 if a = 1, then we have5 by Lemma 2.1(iii), that a2x = x = 1 + re. 
Since b = ax, and £> > 1, then p > 0 and so b > e + 1. Thus, the theorem is 
true for a = 1 and e > 2. For a > 1, the proof is by descent. (We use the 
notation of Lemma 2.1.) Suppose the contrary, and let e be the smallest posi-
tive integer such that there exist integers a, x so that, with b = ax, one has 
that (a, fc, e) is a PCT with a < e and b < e9 a < b and e > 1. Note now that, 
since we have b > a, then x > 1. Since ax < c, then a2x < a c Then 

a2x = 1 + re < acj 
and hence r < a* By Theorem 2.1, (a, ax, P ) is also a PCT and has p > 1, and 
by Corollary 2.1, (a', b!, <?r) = (PW - a, X(PH - a) , P ) is a PCT. Since a > P, 
and since p2 - 1 = axiru - a) then x(ru -a) < P. Thus, 

aF < ef
 s b? < e?

 9 ar < br
 9 and p > 1. 

We have p < a < ax < e, which contradicts the minimality of e. This completes 
the proof. • 

Corollary 2.2: Let (a, b9 e) he a PCT with 0 < a < £>, and with £ > 1, and sup-
pose the integers x, p, u are given as in Lemma 2.1. Assume that a < c. Then 
u = 1. 

Proof: By Theorem 2.2, ax > c, so from Lemma 2.1(ii) it follows that 

0 < ue - a < e* 
Since a < e9 then it must be that u = 1. D 

1989] 133 



RECURSIONS FOR CARLITZ TRIPLES 

3. The Recursion for PCT?s 

Consider the set S(t) of all PCTfs of the form (a, a (t + 1) , c) > where a > 
2 and t > 2. In this section, we show that for each t > 2, S(t) is a recur-
sively defined sequence of triples, with initial element (1, t + 1, £) . 

These conditions of course imply that Theorem 2.2 and its Corollary will 
apply to all these PCTTs. In particular, in the notation of Lemma 2.1, for any 
PCT (a, h, c) in this section we will always have u = 1-

Lemma 3A: Let (a, b9 c) be a PCT with a < b and c > 2, and r as defined in 
Lemma 2.1. If a < c/2, then v < c - 2; if a > c/2, then p > c. 

Proof: We use the notation of Lemma 2.1. Note that 

(p + 1) (c + 1) = PC -h 1 + p + c. 

By Corollary 2.2, u = 1 and so, from Lemma 2.2(1), ax = p + (3. 
By Lemma 2.1(iii), a2x = PC + 1. Hence, we have 

(p+l)(<? + l)= a2x + ax = ax (a + 1). 
If a < c/2, then a + 1 < c - a. Then, 

(p + 1)(<? + 1) < ax(c - a) = c2 - 1, 

which implies that v < c - 2; similarly, if c/2 < a < e9 then a + I > c - a , 
and then p > <? - 2. Note that a = c/2 is not possible if c is odd; if c is 
even and c > 2, then (a, c) = 1 implies that a * c/2* [Lemma 2.1(iil) implies 
that (a, c) = 1.] By Lemma 2.2(ii), since u = 1, we have 

(p - a)c = ap - 1, 

so that (p, c) = 1 and hence p * c« It remains to show that p * (<? - 1) . Sup-
pose to the contrary that v = e - 1. By Lemma 2.2(i) then, ax = 2c - 1 > 3. 
Since ax must divide c2 - 15 while gcd(2c - 1, <2 - 1) = 1, then 2c - 1 must 
divide c + 1; this is impossible for <? > 2. Thus, P * c - 1, and it follows 
that p > e. D 

Lemma 3.2: Suppose that (a, ax, P) and (a, ax, fc) are both PCTfs with P, fc > 2 
and x > 3, and that v * k. Then a2x = 1 + rks and r + fe = ax. 

Proof: By Corollary 2.2, n = 1. Then, from Lemmas 2.1 and 2.2, we must have: 

p 2 - 1 = ax(r -a) 
a 2 x = 1 + rm (for some p o s i t i v e In teger m) 
p + 77? = a x 
fc2 - 1 = ax(s - a) 
a2x = 1 + /en (for some positive integer ri) 
k + n = ax. 

Then 

a2x = 1 + /??(ax - TTZ) = 1 + n(ax - n), 

and then 

(m - n)ax ~ m2- - n2, 

which gives ax = 777 + n. Then k = m and p = n. D 

Lemma 3.3: If (a, ax, c) is a PCT with e > 2 and x > 3, and if a2x = 1 -f PC, 
then p * <3. 
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Proof: If P = 15 c l e a r l y p * c« Suppose r > 1. Since a2x =1 + vc implies t h a t 
(a , P ) = 1 and r > 1, then p * a. By Lemma 2.2 and Corol lary 2 .2 , 

(p - d)c = pa - 1. 
Thus, p and c must be relatively prime. Since c > 1, then p * c, D 

Coronary 3.3: Suppose that (a, ax, c) is a PCT with e > 2 and x > 3, and with 
azx = 1 + re and a > c/2. Then the PCT (a, ax, P ) has p > c and a < p/2. 

Proof: For the PCT (a, £>, c) , Lemma 3.1 says that p > o. Applying Lemma 3.1 to 
the PCT (a, bs P ) completes the proof. • 

Remark: Observe that, given any PCT (a, ft, e) with b/a = x > 3 and e > 2, 
there are two more PCT!s particularly associated with it, in which the quotient 
of the second element by the first is also x9 namely 

(c - a, (c - a)xs c) and (a, b9 P) . 

By Lemmas 3.1 and 3.2, there are exactly two such triples, and, in the lexico-
graphic ordering of all triples, one of these associated triples is "less than" 
(a, b9 c), and the other one is "greater." 

Example: x = 5; CQ = 4 = x - 1; a = 1. Then (1, 5, 4) is a PCT; 

a2x = 5 = 1 + 4 . 

Also (3, 15, 4) is a PCT so we have a = 3 and 
a2x = 45=. 1 + 4x11. 

[Note that 3 = CQ - 1, and 11 = <?Q - <3Q - 1 = <?]_.] 
Now (3, 15, 11) is a PCT (Theorem 2.1). Wishing still to go up, use the 

related PCT (8, 40, 11) (Corollary 2.1); then a = 8 and we have 

azx = 1 + 11x 29. 

Put o2 = 29. 

[Note that 8 = 11 - 3 = (cl - cQ + 1).] 

We now have that (8, 40, 29) and (21, 5 x 2 1 , 29) are PCTfs. With a = 21, 
then 

a2x = 1 + 29 x 76. 

Put c3 = 76. 

[Note that 21 = c2 - &i + c0 - 1.] 

For convenience, we state this rather commonplace observation as a theorem. 

Theorem 3 A : The set S(t) of all PCTfs (a, a(£ + 1), c) with a > 0, <? > 2, t > 
2, is linearly ordered by the lexicographic order: 

where AQ = (1, t + 1, t ) , and if y4n = (a, a(t + 1), c ) with a < <?/2, then 
i4n + 1 = (c - a, (e - a) (t + 1), e); 

if An = (a, a(t + 1 ) , c) with a > c?/2, then 
A n + l = (a, a(t + 1), (a2(t + 1) - l)/c). • 
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The first few members of {A^} are: 

A0 = (1, t + 1, t) 
^i = (t - 1, (t - l)(t + 1), t) 
i42 = (t - 1, (t - l)(t + 1), t2 - t - 1) 
4 3 = (t2 - 2t9 (t2 - 2t)(t + 1), t2 - £ - 1). 

Let (#Qs #]_, x2, . ..) be the sequence of the left-hand entries of the A^5 
and define a sequence (an) as follows: 

<2Q = 1, ai = £ - 1, 

and then, for all i > 1, a^ = #2£ - 1°  That is5 (an) is the sequence of the 
distinct left-hand entries of the triples A±. We proceed similarly on the 
right; it will be convenient to furnish this sequence with an "extra" initial 
term: 

CQ = 1, ci = t, a2 = t2 - t.- 1, ... . 
From the definition, we have that 

an = cn - an_! and cn+ 1 = (a2 (t + 1) - l)/on. 

Theorem 3.2: For fixed t , t > 2, the sequences { a n } a n d { c n } defined above s a t -
i s fy 

( i ) a n = cn - on_l + . . . + ( - 1 ) ^ ^ . + . . . + ( -1)" (n > 0) 
( i i ) cn + i = ( t + l ) c n - 2(£ + l ) a n _ ! + ^ - x (n > 1 ) . 

Proof: Since ag = 1 = (-1) ° 5 then (i) follows by induction from the definition 
of {Ai}. 

We have OQ = 1, and Cj = t, so 

<?2 = t2 - £ - 1 = (t + l)c1 - 2(t + l)a0 •+ c0. 

From the definition of {i^}, if n > 2, we have 

Cn = {(£ + l)(c„-i - On.2 + ... + (~1)W)2 ™ l}/<?„-l 

= [(£ + 1) C2„i + 2C„.1(-C„_2 + ^n-3 ™ 8° « + (-D* 

+ (~̂ -2 + e„_3 + ... + (-1)")2 - U/^-l 

= (t + l)en-i + 2(t + 1)(-C„_2 + ^ - 3 - '•• + (~i)n) 

+ {(£ + l)(-tfn-2 + e*-3 ~ ••• + (""I)")2 " H/^n-

= (t + D ^ - x + 2(t + l)(-an_i) + {(£ + l)(an_2)2 - l}/cn-l. 

From the definition of {A^}, we know that 

{(£ + l)(an_2)2 - 1 }/<?„•-2 = cn.l5 

and this proves (ii). • 

Using this result, one can establish that the sequences {an} and {cn} do in 
fact satisfy recursions of a much simpler nature, 

Theorem 3,3: For fixed t, i > 2, the sequences {an} and{cn} satisfy, for n > 1: 

(i) cn_i + cn = (t + l)an-i 

(ii) an + 1 = (t - l)an - an-i 

(iii) on+i = (t - l)cn - c n _ l 9 
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Proof: It is easy to verify that (i) , (ii), (iii) are all true for n = 1,2, 3. 
Suppose they are true for all k9 1 < k < n. From Theorem 3.2 and the in-
ductive hypothesis, we have 

en+i = (£ + D^n + 2(t + l)(-a„_i) + £n_i 

= (t + l)c„ - 2(en + cn-i) + cn_! 

= (t - l)en - c„_i. 

It then follows that 

c n + l + c n = fc?n " c n - 1 = (^ + D ^ n ~ ^n " <?n - 1 

= (t + l)(cn - an_x) = (t + l)an. 

Since an - cn - an-\ , statement (ii) follows from (iii); this completes the 
proof. • 

4. Generating Functions 

It is well known that recursive sequences like {an} and {cn} are naturally 
associated with generating functions, which may be found and described in a 
standard way. In this section we give the generating functions and the corre-
sponding Binet formulas without proof. 

Let t be a fixed integer, t > 2, and consider the sequences {an} and {cn} 
defined in Section 3. Define two formal power series by 

i=0 I=0 

Theorem 4.1: The series defined above satisfy 
F(z) = (1 + z)/(l + (1 - t)z + z2); G(z) = F(z)/(l + z). D 

If t = 3, then 
3 2 + 2 ( 1 - t) + 1 = (Z ~ l ) 2 , 

while, if t > 3, then z2 + z (I - t) + 1 has irrational roots. Thus, we consi-
der two cases separately. 

Theorem 4.2: If t = 3, then 

F(z) = E(i + 1)3*; 

an = n + 1 and cn = In 4- 1. Q 

Theorem 4.3: Let t > 3, and let a, 3 be the two roots of z2 + (1 + t)z + 1. 
Then a * 3> and we have 

an = (a*+1 - 3n+1)/(a - 3) 
and 

en = (a*+1 + an - 3n + 1 - 3„)/(a - 3). D 

5. Some Exceptions 

In this section we discuss the reasons for the restrictive conditions at-
tached to some of our results. Throughout we use the notation of Lemma 2.1; 
(a, b, a) is a PCT, a, b, c are positive integers, and so on. 
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A. If c = 1: For all positive as b9 (a, bs 1) is a CT and is primitive if 
and only if a = 1. 

B. If c = 2: The only PCT\s with c = 2 are (1, 1, 2), (1, 3, 2), and (3, 
3, 2). 

C. If c > 2, there are no PCT's of the form (a, 2a5 e). or (a, 3as e) . 

D. There are PCT?s of the form (a, a, e), for instance (8, 8, 3). How-
ever, these seem to differ from those with a < b in various essential 
ways; in particular, they do not appear to fit into a single recur-
rence scheme. Note that DeLeonTs conjecture does not apply to these 
PCTfs. 

Statements (A) and (B) are easily checked. To see (C) , suppose first that 
(a, 2a, c) is a PCT with c > 2. Then, by Theorem 2.2, we have a < c < la ; and 
by Corollary 2.2 and Lemma 2.1, we can write 

c2 - 1 = 2a(c - a) = lac ~ 2a2. 

Rearranging, we get 

c2 - lac + a2 = 1 - a2 

(c - a) 2 = 1 - a2. 

Since e > a, this is positive, contradicting the fact that a > 0. Therefore, 
(a, 2a, c) can only be a PCT If c = 1, 2. 

Proceeding similarly with a PCT of the form (a, 3a, <?) with c > 2, we get 
a <. <? < 3a and 

cl _ i = 3a(c - a) 

(<? - a) 2 = 1 + a O - 2a). 

Since c > a, this is positive, so c > la . Rearranging the first equation in 
another way, we get 

c2 - 3ac + 2a2 = 1 - a2 

(c - a)(c - 2a) = 1 - a2. 

Since c > 2a, we must have a = 1. A CT (a, ib, c) must satisfy a& = 1 (mod c) 
and c2 E 1 (mod a, 6). Here we have a = 1, Z? = 3; then a£> = 1 (mod c) implies 
c < 2. Thus, there are no PCTfs with c > 1 and the form (a, 3a, <?). 

References 

1. L. Carlitz. "An Application of the Reciprocity Theorem for Dedekind Sums.11 
Fibonacci Quarterly 22(1984). 

2. M. J. DeLeon. "Carlitz Four-Tuples." Fibonacci Quarterly (to appear). 

138 [May 


