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A rational number r is said to be divisible by a prime number p provided
the numerator of r is divisible by p. Here it is assumed that all ratiomnal
numbers are written in standard form. That is, the numerators and denominators
are relatively prime integers and the denominators are positive.

Certain sequences {Hn}:=1 of rational numbers have the property that if p
is any prime number, then u, = u; (mod p). A sequence {u,l,., having this pro-
perty is said to be a Fermat sequence or to possess the Fermat property.

The obvious example of a sequence that has the Fermat property is {a”},.;
with a being an integer. Indeed Fermat's Little Theorem states that if a is
any integer and if p is a prime number, then a? = a (mod p).

There are sequences {u,},_., that have the Fermat property other than
{a"};_,. An example of a sequence that has the Fermat property for odd primes
is the sequence {7,(x)};_; where x is an integer and T, (x) is a Tchebycheff
polynomial of the first kind.

It is the purpose of this paper to give a class of sequences (of rational
numbers) all having the Fermat property. The following theorem is related to
Newton's formulas. Let

fl@) = ok + A2k + oo + 4,z + 4y

be a polynomial with real or complex coefficients. The sequence {u,},_; is de-
fined in the following way: The first k terms of the sequence are given by New-
ton's formulas, namely,

up + Al = 0,
u, + Alul + 2A2 =0,
ug + Aju, +4u; + 345 =0, (1)

u, + Aqug o HAyuy o+ oeee F A Uy kh, = 0.

After the initial X terms are given, the rest of the terms are generated by the
difference equation

u, + Aju + Agu, o+ cee + AU, =0, (2)

for n > k + 1, which is formed from the polynomial f(x). It is well known that
the sequence {u,},.; given above is the sequence of the sum of the powers of
the roots of f(x). Thus, if

n-1

flx) = (x - xl)(x - xz) cee (&= x)s
then
U, =xf +x+ ... +axf, forn =1, 2, 3,
In this paper it is supposed that xyx, ... %, # 0. See [6], pages 260-262.

The Corollary to Theorem 1 solves the difference equation defined by (1)
and (2) with appropriate adjustments ingithe way f(x) is factored.
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Theorem 1: Let cy, Cps «wws Cp and Ty, X,, ..., ¥, be any real or complex num-
bers. Let

k o
I+ z2)% =1+ 3 4,x%. (3)
i=1 i=1
Then
clx? + szf + e + cpxf . (4)
n-1 . J1 n - 7 . . Jy . . .
J n-g, -J J J, = d
R R (R R N ¢
_ Jp =0 J, =0 2 J3=0 3
n - jl
jn-z J J . J b § . . ) . .
In=2\yg In-2=Jdn-1( Cdn-1 . AIn-1 =Wy —dy =0 mdnon Ajl“Jz”"'"Jn~1
j_1=0(=7n—1> n-2 <J1-Jz‘ ""Jn-l) n-1 n

where n is a natural number.

Proof: The argument is formal. Take 1n x of both sides of (3). Then, for the
left side,

x k
In [T (1 + xix)ci =3 e¢; In(1 + x,2). (4)
i=1 iz1

The expansion

2 3 n-1
R el A LG Dl i
In(l + ) = x 2+3 + ee. + ” + s (5)

|x| < 1 is well known.

Let Coexrf(x) denote the coefficient of x¥ when f(x) is expanded as a power
series in x. Then

k ko, (-1)" !
Coexn.}: ¢; In(l + x;x) =}; 1—7— (6)
=1 =1
_ (—1)”‘1[clx? +oe,x) e + e xy]
- .

To find the coefficient of x” on the right side of (3) after 1ln x is taken,
the following argument is given. Since the coefficient of x” is to be deter-
mined, it follows that only

n
ln(l + Aixi)

i=1

need be considered. Thus, the required coefficient is

n
Coexnln<1 +i§iAix1> (7)
n . n N2 . n N
>4t (EA..?C”' (—1)”-J'1<2Aix7—>
i=1 i=1 " i=1
= Coexrl - + = .. + + .

1 2 n-4

Since each term in this expansion has x as a factor, it is not mnecessary to
consider terms for which n - j > n. Thus, n - j < n so that j 2 0. Also, the
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only ones that are needed to be considered are those which do have some term
with 2" in its expansion. Now each term that has x” in its expansion satisfies
nn-g) 2normn-g4=21ormn-1=2g7 . Thus, the largest value for J needed

is m = 1. Hence, N n- g
n_ i .
S 20

n . n-1
Coe,.» ln(l + zAiw) - Coe,n 3 8)

i1 Jizo n- g

. " . n-g
o1 (—l)n—Jl-lcoexh (Al + z:zAix1-1> 1
iz

"

7120 n =g

. - g _ = i ./ n . .
R M A L P

_ le—:l jz 0 ’L'=2
=0 n -1
. n-g, o . n ] .
n-g, -1 no= Ji\yn-d.-d -2\72
- (-1) 1 -Zo ( jz >A1 1 1Coex‘j~1,j2 <A2 + iZBAixl )
J,= =
= Y . .
J,=0 n-J1

Continuing this pattern with a simple induction completes the proof. [J

An important special case of Theorem 1 occurs when ¢; = ¢, = --- =¢, = 1I.
In this case, in (7),

k . k .
Coe_, ln(l + 2 Aiaﬂ) = Coe,, ln(l + Eoixl), 9)

=1 =1

where gy, 0,, ..., 0, are the elementary symmetric functions of Xy, Xy, «..5 Xy
Thus,

0p = 2; + X, + v.. + Lys
Oy, = X%, + X &y + T2, + oo+ XL+ o0
+ ... +xk_1xk, cees Op
= L&y eee Ty
The only terms in the expansion (9) that need be considered are those which
actually do have some term with x" in its expansion. Now each term which has
x" in its expansion satisfies k(n - j) 2 n, or (k - 1)n 2 kj, [see line (8)].

Let h3x(n) be the largest whole number ¢ such that (k - 1)n 2 k¢. Thus, 0 < j <
hg(n). With this change, the following is a corollary to Theorem 1.

Corollary to Theorem 1: Let n be a natural number and let Z;, Z,, ..., &; be a
set of real or complex numbers.

(n) . J . . . jz > . .
k 1 - _ _ _
R N s
n n n Ji= J2= J2 J3=0 3
X+ xh A e+ af = -
n - J]_
Jy-2 . . . . . ) ) ' o )
> (qk_2>oak-z—Jk_1<_ Cdk-1 )Oak_l—(Jl-Jz----—Jk_u o192 ke
o 1m0 NTx-1/ K72 Jy=dg =t T dg) KL

>

(10)
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where 0,, 0,, ..., Ox are the elementary symmetric functions of Tys Loy wees Xy
and %, (n) is the largest whole number ¢ such that (k - 1)n = kt.

Using (10), with appropriate simplifications for kK = 2 and k = 3, gives:

" [n/2] i (n ; j) . .

xl +xh =n jgo (-1) —n——j(xl + x,)" 23 (2y2,)7 (11)
and
xl + xy + x} (12)
[2n/3] . J -

noy (-1)? Y AT (x, + 2, + x,)" 72

_ d=o E=[(J’+l)/2]( . )(J S )@t ke
n-g

(1@, + Ty + xa2)) 2 ‘j(xlxzxs)j‘“

3

where [ ] is the greatest integer function.

The identity (11) is known. It is reported on in [2], p. 80, in the
article on G. Candido's use of this identity.
For a discussion of formal arguments, see [3].

Theorem 1 can now be used to establish

Theorem 2: Let cj, Cps +..5 C; and X1, Xos «-.> x;, be any real or complex num-
bers and if the coefficients Al, Az’ A3, ... in

k w
I](l + xix)cl =1+ }: Azt
=1 =1

are all rational numbers, then:

(1) The sequence {uyl . _., u, = c,x +c,x? + .- + ¢, x;, is a sequence of
) nip=1> Un 1% 2%2 kT !
rational numbers; and

(2) 1If for any prime number p, p is relatively prime to each of the denom-

inators of 4;, 4,, ..., Ap, then the sequence {unl},_, has the Fermat property.

Proof: From Theorem 1, it is clear that u, is a rational number if 4,, 4,, ...,
A, are all rationals. Also, if p is a prime number, from Theorem 1 and the
fact that the denominators of Al’ Az’ «.v> Ay are all relatively prime to p, Up
= ul(mod p). Here, u; = Al' O

L. E. Dickson established a result somewhat reminiscent of Theorem 2. He
showed that if Z, is the sum of the nth powers of the roots of the polynomial
m=-1 =
x™ + ajx + .- +a, =0,
where a; = 0 and a;, az, ..., a; are all integers, then Zp = 0 (mod p) when p

is a prime. See [1]. This result is of course a corollary of Theorem 2.

Example 1: For the Tchebycheff polynomials it is known that
2T, (x) = (x + V2 - 1)" + (¢ - Vo2 - 1)".

(See [5], p. 5.) Letting
Yy, =x + yx2 - 1

and
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Yy, =x - vxZ - 1
and
(L +y ) (1 + yy) =1+ 2zy + y?

so that, by Theorem 2, for z an integer {27,(x)},_, is a Fermat sequence. Thus,
if p is a prime number ZTP(x) = 2x (mod p). Henmce, if p > 2, {T (oc)}°n°=1 has the
Fermat property.

It is possible to give examples of sequences {u }:=1 in (1) of Theorem 2
where the ¢'s are irrational or even complex. However, if the x 's are dirra-
tional, then it is not obvious that u, = u; (mod p) for p being a prime number.
The position taken here is that no irrational number is divisible by any prime
number. The arithmetic of this paper is the arithmetic of the real rational
integers. Thus,

p
<1+2/§> il-;/g(modp),

but as Theorem 2 shows

() + (55 5 155

Thus, for x£,, £, ..., &£,, the roots of a polynomial over the rationals
1 2 k poiy

p p P
xl + xz + eee + xk = xl + x2 + eee + xk (mod p)

is a generalization of Fermat's Little Theorem.

From Theorem 1 it is clear that if the u's are all rational numbers, then
all the 4's in Theorem 2 are also rational. Thus, the following corollary is
established.

Corollary to Theorem 2: Let ¢y, ¢ps .-.5 ¢, and &y, Z,, ..., Ty be any real or
complex numbers. Then a necessary and sufficient condition for the coefficients
Al’ Az, A3, ... 1in

k © .
nma+ xix)ci =1+ }: 4,xt, (13)
=1 =1
to be ration%l numbers is for the sequence
o\ n n n
{und Ly, Uy = 120 + 20 + ..o + ),
to be a sequence of rationals.

Example 3: Let a and b be rationals and suppose that b is not the square of a
rational. Consider the power series

1+ @+ B E+ (@- /B =1+ 3 4zt (14)

=1
By the corollary, the power series will have rational coefficients provided
U, = (@ + /b)(a - /D)* + (a - VD) (a + Vb)",

is rational forn =1, 2, 3, ... . Now

(@2 -~ b)[(a - /D)*" L + (a + VB)*"1] (15)

Unp

n'_l — . 3 .

@ - ("7 a2 D+ 11,
i=o* T

which is clearly ratiomnal.
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For example,

(1 + w)® (1 + w2)" = 1+ ¥ 4;x%, (16)

=1

is such that A; is rational for 7 = 1, 2, 3, ... when 1, w, w? are the cube
roots of unity.

Example 4: Define the sequence {un};:l by the formula

m 27 - 1
u, =y secn————n.
" Jj=1 4m

Here m is an arbitrary natural number. Then {un};::l is a sequence of integers
which has the Fermat property.

To see this, consider the product

m 27 -1
fy) = 11 (1 - [seczg———ﬂ]y>. (17)
i=1 4m
. m 23 -1
Multiply this by [] cos2——— so that
j=1 4m
m 25 - 1 m 27 - 1
2———-———’” = 2———'” - . 18
f'(y)j[;ll cos - jr=11<cos p y) (18)

Replace y by xz? so that

m 27 - 1 m 27 - 1
f'(xZ) n COSZ_J——TT = n (Cosz—J————TT - .”X,‘2>, (19)
j=1 4m Jj=1 4m

[(—l)mafll coszg%’;—lﬂ]f(xz) = jf:11<x - cos Z—J;;—{ﬂ><x + cos gq—(:%w) 20)

Thinking of cos[(2j - 1)/4m]l along the unit circle for j =1, 2, ..., m, it is
in the first quadrant so that, by symmetry,

m 27 - 1 2m 2 -1
" Y R 2y = - 7. 21
{( ) 'r=]1 cos - n:lf(x ) [;[l(x cos - (21)
J J
A well-known identity is
n 27 -1
2" + 1 = [I (xz - 2x cos I 1). (22)
i=1 2n

In (22), let n = 2m and & = 7 so that

2m 23 -1
2 = (=1)"227[] cos2=L . (23)
j=1
Now, by symmetry around the unit circle,
2m 27 -1 m 2§ -1 -1)"
o T = -1 c 82 m = . (24)
jl;llc S 4m -1) jl;ll © 4m 22m=1
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Using (24) and (21) yields

2m 27 -1
f(x?) = (-1)m22m-1 [](? - cos —g—————ﬂ>.
j=1 4m
It is well known that

om 27 - 1
T, (x) = 22m-1 (x - cos —=—1),
2m( ) jEL 4m

where Ty, (x) is the 2m‘™®™ Tchebycheff polynomial (see [4], p
follows from the fact that T, (x) = cos(narccos x). Now x = /Y, so that

F) = UL, (),
which is a polynomial in y with integer coefficients.

Since sec2[(2j-1)/4m]m for j =1, 2, 3, ..., m are the roots of

(-D)"y"T, (1/Vy)

p. 86-90).

(25)

This

(26)

and the coefficients of this polynomial are all integers and the leading coef-
ficient is (-1)™, it follows from the corollary to Theorem 2 that {un}:=1 is a

sequence of integers satisfying the Fermat property.
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