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1. Introduction 

A positive integer which is divisible by its digital sum is called a Niven 
number. This concept was introduced in [1], and was investigated in greater 
detail in [2], [3], and [4]. A variety of results and open questions were pre-
sented in these articles. One problem, however, that was not completely 
resolved was a characterization of Niven repunits. That is, Niven numbers 
whose decimal representation is all ones. For example, the repunits 1, 111, 
111111111, and 111111111111111111111111111 (2.7 ones) are the first four Niven 
repunits. Here, we will give a complete characterization of such integers. In 
addition, it will be pointed out how all Niven repunits can be constructed from 
a certain list of primes. 

To facilitate the following discussion, we use the notation R(n) to repre-
sent the repunit made up of n ones. Thus 

R(n) = |(10n - 1) 

and so, we wish to determine under which conditions 

R(n) = 0 (mod ri). (1.1) 

2. A Useful Lemma 

A particular instance of the following lemma will be useful in proving a 
characterization theorem for Niven repunits. 

Lemma 2.1: Let a,b9 m* and n be positive integers. If a E b (mod mn), then 
amk E bmk (mod mk + n) 

for each nonnegative integer k. 

Proof: By observing the factorization, 

am^i __ 6 m * + i = {am* _ hmk) [ (amk ) m ~ l + (amk ) m ~ 2 Q)mk) + •-• + ( Z ^ ^ T " 1 ] , 

the proof follows by induction on L 

For convenience, we state a special case of Lemma 2.1 as Lemma 2.2. 

Lemma 2.2: Let m9 n, and t be positive integers. Then lO7^ E 1 (mod mn) implies 
that 

(10*)™* = 1 (mod mk + n) 
for each nonnegative integer k. 
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3. The Characterization Theorem 

Using Lemma 2.2, we can now prove the following theorem, which gives neces-
sary and sufficient conditions in order that (1.1) is true. 

Theorem: Let n and 10 be relatively prime. Denote the order of 10 (mod n) by 
gn(10). Then the following statements are equivalent. 

(1) R{n) is a Niven repunit. 

(2) 10n E 1 (mod n). 
(3) n E 0 (mod en(10)). 

(4) n = 0 (mod gp(10)) for each prime factor p of ft. 

Proof: That (1) =» (2) => (3) => (4) is a direct application of congruence arithmetic 
and Fermatfs Theorem. Thus, we need only prove that (4)^(1). 

Suppose that n .= 0 (mod ep(10)) for each prime factor p of ft. Let m be the 
least prime factor of ft. Then, since gOT(10) < m and, by the hypothesis em(\0) 
is also a factor of ft, we have that em(10) must be 1. This can only occur when 
m = 3. 

So, we may write the prime factorization of n in the form 
t 

3k n P?*» where 3 < p_ < p0 < pQ < ••• < p . 

Thus, ft = 0 (mod ev (10)) for i = 1, 2, 3, ..., £ and since 
10ePX10) E l (mod v ^ 

for each i, we have that 10n = 1 (mod p^) for each i. But by FermatTs Theorem, 

10 P^1 = 1 (mod p.) 

and so, £p.(10) divides p. - 1 for each i. Thus, 

l0(">Pi-l) E 1 (mod pt) 

for each i where, as usual, (ft, p^ - 1) denotes the greatest common factor of n 
and p. - 1. But, since (ft, p. - 1) is a factor of ft/p^ , we have 

10 n / p ^ E 1 (mod P i ) 

for each i. Noting that 

10 n / 3 k E 1 (mod 3 2 ) , 

we have, by Lemma 2.2, that 

(10B/P<V'*' = 1 (mod ph + l ) 
for each i, and 

(10«/3fc)3* = x (mod 3fe + 2 ) . 

Therefore, 

10n E 1 (mod p*i) 
for each i, and 

10n E 1 (mod 3f e + 2). 

It follows that 10n E 1 (mod 32ft) and so 

-kl0n - 1) E 0 (mod ft). 
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Therefore, R(n) is a Niven repunit, and we have that (4)=>(1). 

An immediate corollary to the theorem is that i?(3t) is a Niven repunit for 
every nonnegative integer t . This follows from the fact that e3(10) = 1 and 
statement (4) of the theorem. In fact, statement (4) gives the most useful 
characterization of Niven repunits. 

4. Generation of Niven Repunit s 

Using statement (4) of the theorem, we can construct all n such that R{n) 
is Niven by determining which primes, p, are such that every prime factor of 
ep(10) also satisfies the condition of statement (4). For example, since 
03(10) = 1, as has already been pointed out every power of 3 is a Niven 
repunit. But since g7(10) = 6 has a factor of 2, it follows that no multiple 
of 7 can satisfy statement (4). That is, R(lm) can never be a Niven repunit. 
In fact, the first prime larger than 3 that can be a factor of an n that sat-
isfies statement (4) is 37. This follows because 037(10) = 3 and, as stated 
above, 3 is a prime that must be a factor of every n that satisfies statement 
(4) of the theorem. 

Similarly, it is found that the next two primes, after 37, which could pos-
sibly be factors of an n such that R(n) is Niven are 163 and 757 since 

e163(10) = 3Lf and £757(1) = 33. 

The first column in the following table gives all primes, less than 50,000, 
which could possibly be factors of an n that satisfies statement (4). The sec-
ond column gives the corresponding ep(10). 

TABLE 4.1 

prime p 

3 
37 
163 
757 
1999 
5477 
8803 
9397 
13627 
15649 
36187 
40879 

81 
27 
999 
1369 
1467 
81 

6813 
489 

18093 
757 

ep(10) 

1 
3 
= 34 

= 33 

= (33)(37) 
= 372 

= (32)(163) 
= 3^ 
= (32)(757) 
= (3)(163) 
= (3)(37)(163) 

It should be noted that an infinitude of such primes exist, since £p(10) is 
a power of 3 infinitely often. As an example, suppose that 757 is the largest 
prime factor of n. Then in order that R(n) be a Niven repunit, n would have to 
be of the form 

3ni37n2163"3 757^ 

where the exponents are necessarily interdependent. That is, if n^ * 0, then, 
by inspection of the right column of Table 4.1, n\ > 4. So, a list of genera-
tors of Niven repunits can be continuously constructed by consideration of 
Table 4.1. The first few of such a list is given in Table 4.2. 
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TABLE 4.2 

3 
(3)(37) 

(3^(163) 
(33)(757) 

(33)(37)(1999) 
(3)(372)(5477) 
(34)(163)(8803) 

(3^) (9397) 
(33)(757)(13627) 
(3) (163)(15649) 

For example, the product (34) (163) (8803) is in the list given by Table 4.2 be-
cause 

g8803^10) = 1 4 6 7 = (32)(163) 
and each of its prime factors is in the list given by Table 4.1. So, if 8803 
is the largest admissible prime factor of n, 163 would also have to be a factor 
which, in turn, forces 3^ to be a factor of n . The phrase, ". . . generators 
of Niven repunits . . ."is used because increasing the exponents of any of the 
prime factors of the least common multiple of any collection chosen from the 
list given in Table 4.2 will be an n such that R (n) is a Niven repunit. For 
example 

lcm( (3^(163), (33)(757), (33) (757) (13627) ) = (34) (163) (757) (13627) 

and so 

i?(3ni163n2757n313627ni+) 

will be a Niven repunit for any n\ ^ 4, n^_ > 1, n% > 1, and n^ > 1. 

5. Concluding Remarks 

As pointed out, the list of primes given by Table 4.1 can be extended by 
inspecting gp(10) for primes p. A useful reference for finding such primes has 
been published by Yates [5]. For example, he has calculated that, for the 
prime 333667, 

e333667(10) = 9 = 32. 
Hence, 333667 may be added to the list given by Table 4.1 since 3 is already 
listed in Table 4.1. 

Finally, it should be mentioned that since, for any decimal digit d * 0, 

— ( 1 0 n - 1) = 0 (mod tin) 

if and only if R(n) = 0 (mod n), the characterization theorem for repunits also 
gives a complete characterization for what could be called sfNiven repdigits." 
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