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1. Introduction 

A generalized Frobenius partition or simply an F-partition of an integer n 
greater than 0 is a two-rowed array of nonnegative integers 

J CLI . . . ar\ 

Ui ... br) 
where each row is arranged in nonincreasing order and 

r 
n = v + E (ai. + *i) • 

i = l 

Let Q^^^iri) denote the number of those F-partitions of n in which each part is 
repeated at most In times and is taken from k copies of the nonnegative integers 
which are ordered as follows: mi < nj if m < n or if m = n and i < j , where i 
and j denote the copy of the nonnegative integers. c^^^in) is called the num-
ber of F-partitions of n with k colors and h repetitions. Let 0$-^ (̂<?) D e t n e 

generating function of cty^ h(n) so that 

00 

ft = 0 

For example, the F-partitions enumerated by e$2 2(1) a r e 

oooo 
and those enumerated by ccf)2 2(2) are 

/ 0 2 0 A / 0 2 0 2 \ / 0 2 0 2 \ / 0 2 0 2 \ /0 2 OA 
\o2 o1Ao2 o2Ao2 OxAoi 0^x02 o2/ 

°2 ° l \ /° l 
Oi 0 

l \ / 0 i 0 A / 0 i OA/Ox OA 
J\02 OxAox 0^X02 02/ 

and 

^ 2 , 2(̂ 7) = ! + ^ + 17<72 + 

Similarly, 
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George E. Andrews [2] has studied extensively the two functions 

c<bl,k(n) = <h(n) a n d 0§k, l(") = c$k(ri). 
The former function enumerates the F-partitions of n in which the parts repeat 
at most k times and the latter enumerates those i^-partitions of n in which the 
parts are distinct and are colored with k given colors. Andrews [2] has ob-
tained infinite product representations for 

^ l , l(?) = <h(<7)> c<t>i,iW = <j>2(<?)> 

and has expressed Cc()3 1 (̂ ) = C<J> 3 (̂7) as a sum of two infinite products. The 
purpose of this paper is to outline a method of obtaining such representations 
for Cfyfc^iq) for arbitrary positive integers k and h. We first consider in §2 
the typical cases C<|>2, i(q) a n d (^(1)2J3(?) a n d sketch in §3 how the methods of §2 
can be extended for C\j>£ ^ (?) for arbitrary positive integers k and In. Through-
out, we use the notations 

CO 

(a)m = (a, q)m = II (1 - aqn) 
n = 0 

for complex numbers a and q with | ^ | < 1. 

2. Represen ta t ions of Ccj)2 2 (q) and C(f)2 3 (q) 

Theorem 1: For | ^ | < 1, 

^*2,2(?) = ^ 0 ( ^ ) 2 ( ^ ; ? Z t )» ( -? 2 ; ^ ( i ) 
+ 2q-l[qB0(q)]2(q1*; q^i-q1*; qh)h 

where A$(q) = ̂ 2(̂ 7) and qB§(q) is the generating function for symbols 

(2) /CLI ••• aPaP+1\ 

\3i ••• 3 P / 

That is, this is subject to the same rules as the original generalized Froben-
ius symbols related to <\>2(q) but there is one more element in the top now. 
This sort of generalization of the Frobenius symbol has been studied at length 
by James Propp in a forthcoming article in the Journal of Combinatorial Theory. 

Proof: To prove (1) we first make use of the following result of Andrews [3, 
Lemma 3]: 

(z*q)JzZq)Jz-la-l)a(z-H-l)m (3) 

= A0(a> 6> q) £ qn2 + nane,n3Zn 

n = -oo 

- $-lA0(aq, 3> q) E qnlan$nzln~l, 
n = -co 

where z, a, 3 are nonzero, \q\ < 1, and 

A0(a, 3, q) = (-<?)„ (-ae*"1?; q2)m (-a'l&q; qZ)m(q)~J' W 

Choosing a = co, 3 = a)2 in (3) where a) = exp(27ri/3) and observing that 

n (i - ?^-i +^- 2 ) ^ - ^ 4 - ^ 
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we obtain 

ft (1 + zqn + l + z2q2n+2)(l + z~lqn + z~2q2n) (5) 
n = 0 
= A0(q) ± qn2+ns2n _ BQ {q) £ q**s2n-l, 

n = -oo n = -oo 

where 

A . W - (^2i " > ^ ' i ̂  - •,(,) (6) 

B /- ̂  (-<?; <72)m(-<76; g6)„ 
W - ^ • (7) 

From the General Principle of Andrews [2, p. 5 ] , it immediately follows 
that C$2 2^) ^s tne constant term in 

ft (1 + *qn + l + z2q2n+2)2(l + z~lqn + z~2q2n)2. 
n = 0 

Squaring (5) and equating the constant terms, we get 

00 _ 00 „ 

C+2j2(?) = M ? ) 2 Z ?2" + t?B0(?)]2 £ ?2" -2""1. (8) 
n = -00 n =-00 

Now, using Jacobifs triple product identity [1, p. 21]: 

00 ~ 

£ <?«V = (q2; ̂  (-<?*; q 2 ) ^ - ^ " 1 ; ?
2 ) r o (9) 

for z * 0, |q| < 1 for the two summations in (8) we get (1). 

From the proof of Theorem 1, it immediately follows that C ^ 2(?) n a s the 
following representation. 

Corollary 1: For | ^ | < 1, 

rA , , (-<?2; - 7 2 ) 2 ( - ? 3 ; g 6 ) , 2 ^ 1 * ; g 'Q-C-g2; g* ) 2
 n n , 

C<|>2 2 ( ? ) = 7—7 (10) 
(g>2 

^ , ( - ? ; ?2)2(-c?6; g 6 ) M ( ^ ; ^ ) „ ( - ^ ; c ^ ) 2 

+ 2? S)l * 
Theorem 2: For |q| < 1, 

^2, s(g) -4i(g)2(g6; g6)„(-g3; g6)f (ID 
+ q-HqB1(q)][q^C1(q)](q&; q6)a(-q; g6)m("g5; g5)„> 

where A\(q) = (j)3(q)5 qBi(q) is the generating function for symbols (2) where a 
part can be repeated at most three times on each row and q2Ci(q) is the gener-
ating function for symbols 

/oil . .. a2,ar+1a2, + 2\ 

\8l ... 3r / 
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which has two more elements in the top row than the original generalized Fro-
benius symbol. 

Proof: Proof of (11) is similar to the proof of (1) and we give only a sketch. 
First, for a, 3, y, z nonzero and \q\ < 1, we can obtain the Laurent expansion 
of the product 

(zaq)m (zbq)n (zyq)m (s^cT1^ U^B"1^ (^V1^ (3 ') 

in the same way the analogous Andrews* identity (3) above is derived [3, Lemma 
3]. Then, substituting a = i> 3 = -i* and y = -1 in that Laurent expansion, we 
obtain in analogy with (5) 

fl (1 + zqn + l + z2q2n + 2 + z3q3n + 3)(l + z~lqn + z'2qln + z~3q3n) (5') 
n = 0 

(q2; q2)m(q; q2)2(qe; q6), T ( 3. ̂ 6)2 f)<7«3n^3n)a3n 
(?)„ L »- — 

+ q(-q; ^^(-q-S; q6^ £ qh( 3n2 + 5n ̂ Sn + l 
n = -oo 

+ qH-q-1; q6)A-q7l <76)„ f) ?«3"2+ 7" )s3"+2l 
ft = -oo -" 

= ^(qOZi + ̂ i(^)E2 + ̂ l(^)^3^ say. 

From the General Principle [2, p. 5], it is clear that C$2 3(̂ 7) is a con-
stant term in 

00 

II (1 + zqn + l + z2q2n + 2 + <?3<73n+3)2(l + z~lqn + z~2q2n + s" 3^ 3") 2. 
n = 0 

Squaring (5f) and equating the constant terms, we find 

C<$,2,3(q) = Ax{q)2 £ ?3n2 + [qBl (q) ] [q2Cx {q) ] £ ?3n2+2n-5. ( 8 ' ) 
n = - o o ft = - oo 

Finally, using (9) for the two summations in (8')* we obtain (11). 

From the proof of Theorem 2, we obtain the following representation of 

Corollary 2: For \q\ < 1, 

C<t>2,3W = 7—^ [(-q6; qb)t + < 1 2 > 

+ 2^2(-^; (76)2(-^5; qe)2(~q~l; qs)„(-q7; q6)ml . 

3. Representation of Ccf> h(q) in General 

The representation of C<J>£ h (q) for arbitrary positive integers fe and /z is 
obtained in Theorem 3 in the same way we obtain the special cases (1) and (11), 
but after suitable generalizations of the methods. Lemma 1 furnishes a result 
which plays the role played by Jacobi's triple product identity in passing from 
(8) to (1) and from (8') to (11). Due to the mechanical nature of the steps, 
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we only sketch our proofs and avoid lengthy expressions. 

Lemma 1: For a > 0, a\, . .., a^-i integers and \q\ < 1, the series 

^ 4 E nl + E n n\ + j 3
f l n 

£ q \ t - i i<i<j<fe-i V t - ! r l ( 9 f ) 

can be expressed as a sum of 27c_23?c~34^~I+ ... (?c - l)fc" (k "^ infinite products. 

Proof: First Step. By grouping terms with nj_, ••-> ̂ k-2 e v e n an<3 ^i> •••> nk-2 
odd separately, the series (9f) can be written as the sum of 2^~2 series, each 
of which will be of the form 

/ \ k~2 

a(3nf + • • - + 3ng . 2 +2 E ^nA + Y, hni 
\ l l<i<j<k-2 I * - l 

^ qanl_l + bnk_1 + bt 

nk-l = -°° 

where wl5 2?̂ , . .., bk-2> &> b' a r e integers. Here, the second series can be 
written as an infinite product by Jacobifs triple product identity (9). Thus, 
it suffices to express the first series as a product. 

Second Step: By grouping terms with nl5 ..., ̂ ^-3 = v (mod 3), r ~ 0, 1, 2, 
the first series of the first step can be written as the sum of 3 3 series, 
each of which will be of the form 

^ alun\ + • • " + 24n*-3+ 12 , . ? . »i»j)+ E3"i»* 
<7 A , <7 ^ l<i<J£fc-3 / i - 1 

n!, ... , nk_3 = -« 

x £ q3ank-2 + ank-2 + c ' , 

where m2, Q\* ...3 £ -3* £* cf are all integers. 

Proceeding similarly, we arrive at the (k - 2 ) t h step, namely, 

(k - 2)th Step: By grouping terms with n\ = r (mod fc - 1), r = 0, 1, 2, ..., 
k - 2, separately, the first series of the (k - 3) t h step can be written as a 
sum of (k - l)k-(k-D = fe - l series, each of which will be of the form 

» i - — n2=-co 

(where ^_ 2, a^, Bi, Yi for ^ = 15 2 are integers), which are explicit infinite 
products by (9). 

Conclusion: From Steps 1 to (k - 2) , it is clear that the series (9') can be 
written as a sum of 2/c_23k_34fc~L+ ... (k - 1) infinite products. This proves 
Lemma 1. 

Theorem 3: For arbitrary positive integers k and h, C^>kth(q) can be expressed 
as a sum of infinite products. 

Proof: For s, 04, ..., a^ all nonzero and \q\ < 1, we consider the product 
(sa1q)oo(sa2^)ro ... (sa^)oo(s-1a-1)oo(s-1a-1)aD ... O T 1 ^ 1 ) . , (3") 
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which, on using (9), can be written as 

m n^ + n-^ n2 + n 

iq)lh t {-l)niq~T~^l
lzn^ ... ± (-1)̂  cT^- a^ z«* . (13) 

It is not difficult to realize a procedure for obtaining the Laurent expan-
sion of the product (13). For instance, consider, for arbitrary integers a, b, 
Oy d, e, f and nonzero 2, a, 3 and \q\ < 1, the product 

y> Qam^ + hm^mgCm y ^.dn1-^ ennn fn / i n 
m = -oo n = -00 

In t h i s , l e t 

*= T^fry and y = T^TTT 
By grouping terms with m = r (mod y), r = 0, 1, . . . , z/- 1, separately, and then 
changing n to n - xm, (14) can be written as sum of y number of series of the 
form 

I) 5(6, z9 q, m) f; (?^2-^^^+^ane (15) 
m= -00 n = -00 

Now grouping terms with m = r (mod e),r= 0, 1, ..., g - 1, where lad - be = 0 
with (d, e) = 1 in (15), we obtain the Laurent expansion of (14). 

By applying the above procedure successively, we obtain the Laurent expan-
sion of (13). Substituting 04 = u), . . . , a^ = LO^, where GO = exp(2iri//z + 1) in 
that Laurent expansion, multiplying the resulting identity k times, and equat-
ing the constant terms, we find Cfy^^iq) to be a sum of series of the form (9') 
which, by Lemma 1, is a sum of 2k~2-3k~^> ... (k - 1) infinite products. 

It would be interesting to obtain combinatorial proofs of equations (8) and 
(8f) which might throw more light on this subject. 
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