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1. Introduction

Harlan Stevens [8] introduced the following generalization of the Fuler ¢-
function. Let F = {fi(x), ..., -fr(x)}, k = 1, be a set of polynomials with
integral coefficients and let A represent the set of all ordered k-tuples of
integers (al, «..s ag) such that 0 < Ays eves Ay S M. Then ¢p(n) is the num-
ber of elements in A4 such that the g.c.d. (fl(al)’ cees frag)) = 1. We have,
for n = H;=1 R;J,

r Nys oo Ny
ep(n) = nk. 1 (1 S ML "‘7)
i=1 pjk

where V;; is the number of incongruent solutions of f%(x) = 0 (mod pj), see [8,
Theorem 1].

This totient function is multiplicative and it is very general. As special
cases, we obtain Jordan's well-known totient Jy (n) [3, p. 147] for fi(zx) = --.
= fi (&) = x; the Euler totient functionm ¢(n) = J;(n); Schemmel's function ¢, (%)
[7] for Xk =1 and fi(x) = x(x + 1) ... (x+¢t - 1), £t 2 1; also the totients
investigated by Nagell [5], Alder (1], and others (cf. [8]).

The aim of this paper is to establish an asymptotic formula for the summa-
tory function of ¥,(n) using elementary arguments and preserving the general-
ity. We shall assume that each polynomial f,;(x) has relatively prime coeffi~
cients, that is, for each
fi () = airi x't + airi ._lxpi'l + eoo + a0

the g,c.d. (aipi > aipi ~13 e aiO) = 1.

2. Prerequisites

We need the following result stated by Stevens [8].

Lemma 1:

\K
= % WD D(5) (1)

where p is the MObius function and Qp(n) is a completely multiplicative function
defined as follows: Qz(l) =1 and, for 1 < n = H;=1 p%,
J

r
2
Qp() = 11 Wy ; oo Mg5) 7
Jj=1
Under the assumption mentioned in the Introduction, we now prove

Lemma 2:

lu(n)QF(n)l = 0(nt) for all positive €. (2)
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Proof: Suppose the congruence

-1

Fi (@ = ap, @™ + ag, @7+ oo +agy = 0 (mod p;)

is of degree s 0 <sg,;; < r;, where

i3 iJ
A, # 0 (mod p;)-
Then, as is well known (by Lagrange's theorem), the congruence

fz;(x) = 0 (mod py)
has at most s;; incongruent roots, where s;; < r; for all primes p.; therefore,

N;; < r; for all primes pj and Nij <2+ max r; =M, M > 1, for all © and j.

l<i<k
. Now, for »n = H;=1 p;j, Iu(n)QF(n)] = 0 if j exists such that e; = 23 other-
wise,
r
lumapym)| = | (D7 - Iy e W) | = m*T,
i=

Hence, |u(n)Qp(n)| < 49 for all n, where A = M¥ > 1.

On the other hand, one has
(n) =
2% =2" < [l (e; + 1) =dn),
Jj=1

so w(n) < logyA, which implies
) Qp(n)| < Alos2d0n

Further, it is known that d(n) = 0(n%) for all o > 0 (see [4, Theorem 315]). By
choosing o = e¢/logr4 > 0, we obtain Iu(n)QF(n)l = 0(nt), as desired.

Lemma 3: The series

o u(0) Qp(n)
ngl ?’LS+1

is absolutely convergent for s >0, and its sum is given by

Ny ooy
Ap(8) = {} (1 - __-;:;:E__—>’ (3)
where N; denotes the number of incongruent solutions of f; (x) = 0 (mod p).

Proof: The absolute convergence follows by Lemma 2:
[lu()Qp()/mo+l| < K« 1/ns+1-¢,

where X > 0 is a constant and € > 0 is such that s - € > 0. Note that the gen-
eral term is multiplicative in #n, so the series can be expanded into an infi-
nite Euler-type product [3, 17.4]:

} . 0 0 Q
& u(n)Qi(”) -1 ( > ESE_Z%££2_1> - r]<1 - —fé?1> = Ap.
= n p \ =0 p*e 2 p

From here on, we shall use the following well-known estimates.

Lemma 4:
s+1

zn8=:+1+0(x5),s>1; (4)
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1

— = 0(x!7%), 0 <5 < I3 (5)
n<x n®

1 1

3. Main Results
Theorem 1:
)‘F (k)xk+l

néé e, (n) = 2+ 1 O(Ry(x)) D)

where Ry (x) = xzk or xzl*te (for all ¢ > 0) according as k > 2 or k = 1.
Proof: Using (1) and (4), one has

T oe,m) = L w(dag(d)sk = L u@9pd Z;dsk

n<x ds=n<x

> 9F<d>u<d){ L@/t + 0C(ldy)
d<z k+1

2kl e w( @ (D) el |u(d) 2z (D) |
Tk + 1 G dRTl +0(x 'dgx dk+1 )
[u(@) x|
rofer g OB,
d< dk
Here the main term is ¢
)\F(k)xk+l
k+1

by (3); then, in view of (2) and (6), the first remainder term becomes

de 1
0(xk+l .dz; 37¢T> =<9(rk+1-d§: 2§1Tj€> = 0(x!*%) (choosing 0 < e < 1).
> . >x

For the second remainder term, (2) implies
1

de
ol £ %) ol £ ),
which is
O(xk) for k = 2, and O(x -~ x!71%€) = 0(xl*®) for k = 1 [by (5)].

This completes the proof of the theorem.

For fi(x) = ... = f3 (x) = x, we have N;; =1 for all ¢ and j; thus, ¢%(n) =
Jp (n) — the Jordan totient function. This yields

Corollary 1 (cf. [2, (3.7) and (3.8)]1):

xk+1 5
né%:Jk(n) SIS + 0(xk), k = 2; (8)
2
= 1+ =
ngxw(n) O + O(xl*®), k = 1, for all ¢ > 0, (9)

where r(s) is the Riemann zeta function.
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Remark: The O-term of (9) can easily be improved into O(x log x), see Merténs'
formula [4, Theorem 330].
By selecting kK = 1 and fi(x) = x(x +1) ... (x+¢t -1), t 21, we get
vp(n) = ¢, (n) - Schemmel's totient function [7],

for which ¥y = p if p < ¢, and Ny = ¢ if p 2 £. Using Theorem 1, we conclude

Corollary 2:
2
Tom-=-2n(-1)- 1 (1 - 5755) + 0(xl*€) for all e > 0. (10)

n<x p<t p pz2t

For t = 2, ¢o(n) = ¢'(n), see [6, p. 37, Ex. 20], and we have

Corollary 3:

2
3 @' (n) =¢2 - I1 (1 - é%) + 0(xl*€) for all e > 0. (11)

n<x 14

Choosing k¥ = 1 and fi(x) = (A - x), we obtain
v,(n) = 06X, n) - Nagell's totient function [5],

where N; = 1 or 2, according as p|A or pfA, and we have

Corollary 4:

z? L. _ 2 1
ngxe(k, n = pl}]x(l p2> prilA (1 p2>+ O(x!*€) for all e > 0. (12)

Now, let fj(x) cee = fk(x) =z2 + 1, y; =1, 2, or 0, according as p = 2,
p 21 (mod 4), or p = 3 (mod 4), see [8, Ex. 4]. 1In this case, we have

Corollary &:

k1 1 2k
r ) = 1(1 - 2k+l> ) Il (} - pk+l> (13)

p=1 (mod &)

+ O(Ry(x)), with R, (x) as given in Theorem 1.

Theorem 2: Let f(x) be a polynomial with integral coefficients. The probabil-
ity that for two positive integers a, b, a < b, we have (f(a), b) =1 is

N
l—l(l - _—(p-)>9
P p?
where N(p) denotes the number of incongruent solutions of f(x) = 0 (mod p).
Proof: Let n be a fixed positive integer and consider all the pairs of integers
(a, b) satisfying 1 < a < b < n:

(1’ ]-) (]-9 2) (1, 3) coe (1, VZ)
(2, 2) (2, 3) ... (2, n)
(3, 3) ... (3, mn)

(n; n)
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There are

such pairs and the property (f(a), b) = 1 is true for B(n) pairs of them, where

n? (p)
B(n) = ¢,(1) + ¢,(2) + --- + ¢,(n) ~ 5 E} (l - _E§_> by Theorem 1.

Hence, the considered probability is

. B() _ _ Wi p)
TR (s P2 )

As immediate consequences, we obtain, for example:

Corollary 6 [4, Theorem 332]: The probability of two positive integers being
prime to one another is

1/2(2) = 6/72.

Corollary 7 (Qp(n) = ¢o(n)): The probability that, for two positive integers
a and b, a £ b, we have (a(a + 1), b) =1, is

(- 5)
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