FIBONACCI-LIKE DIFFERENTIAL EQUATIONS WITH A POLYNOMIAL NONHOMOGENEOUS PART

Peter R. J. Asveld
Department of Computer Science, Twente University of Technology
P.O. Box 217, 7500 AE Enschede, The Netherlands
(Submitted July 1987)

1. Introduction

In [1] and [2] we studied difference equations of the form

$$
\begin{equation*}
G_{n}=G_{n-1}+G_{n-2}+p(n) \tag{1}
\end{equation*}
$$

where $G_{0}=G_{1}=1$ and $p(n)$ is either a (ordinary or power) polynomial [1] or a factorial polynomial [2], i.e.,

$$
\begin{equation*}
p(n)=\sum_{i=0}^{k} \alpha_{i} n^{i} \text { or } p(n)=\sum_{i=0}^{k} \alpha_{i} n^{(i)}, \tag{2}
\end{equation*}
$$

respectively, where

$$
n^{(i)}=n(n-1)(n-2) \ldots(n-i+1) \text { for } i \geq 1 \text { and } n^{(0)}=1
$$

The main results established in [1] and [2] provide expressions for the solution of (1) in terms of the coefficients $\alpha_{1}, \ldots, \alpha_{k}$ of (2) and in the Fibonacci numbers F_{n}, i.e., in the solution of the homogeneous difference equation

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} \tag{3}
\end{equation*}
$$

where $F_{0}=F_{1}=1$; cf. also [5].
In this note we derive similar expressions for the family of differential equations corresponding to (1) and (2), viz. we consider differential equations of the form

$$
\begin{equation*}
x^{\prime \prime}(t)+x^{\prime}(t)-x(t)=p(t), \tag{4}
\end{equation*}
$$

where $x(0)=c, x^{\prime}(0)=d$,

$$
p(t)=\sum_{i=0}^{k} \alpha_{i} t^{i} \text { or } p(t)=\sum_{i=0}^{k} \alpha_{i} t^{(i)},
$$

and we express the solution of (4) in terms of the coefficients $\alpha_{1}, \ldots, \alpha_{k}$ and in the solution of the homogeneous differential equation corresponding to (3), i.e., the solution of

$$
\begin{equation*}
y^{\prime \prime}(t)+y^{\prime}(t)-y(t)=0 \tag{5}
\end{equation*}
$$

where $y(0)=y^{\prime}(0)=1$.
Essential in our approach is the following proposition in which $p(t)$ now need not be a (factorial) polynomial at all; it may be an arbitrary function which, however, gives rise to a particular solution $x_{p}(t)$ of (4).

Let $F_{-1}=0$ and $F_{-n}=(-1)^{n} F_{n-2}$ for each $n \geq 2$.

Proposition 1.1: Let $x_{p}(t)$ be a particular solution of (4). If $x(0)=c$ and $x^{\prime}(0)=d$, then the solution of (4) can be expressed as

$$
\begin{equation*}
x(t)=\left(c-x_{p}(0)\right)\left(\sum_{n=0}^{\infty} F_{-n} \frac{t^{n}}{n!}\right)+\left(d-x_{p}^{\prime}(0)\right)\left(\sum_{n=0}^{\infty} F_{-n-1} \frac{t^{n}}{n!}\right)+x_{p}(t) \tag{6}
\end{equation*}
$$

Proof: Using standard methods (cf. e.g., [3]), we first determine the solution $x_{h}(t)$ of the homogeneous equation corresponding to (4). To this end, we solve (5) with $y(0)=y^{\prime}(0)=1$:

$$
y(t)=-\left(1+\phi_{2}\right)(\sqrt{5})^{-1} \exp \left(-\phi_{1} t\right)+\left(1+\phi_{1}\right)(\sqrt{5})^{-1} \exp \left(-\phi_{2} t\right),
$$

where $\phi_{1}=\frac{1}{2}(1+\sqrt{5})$ and $\phi_{2}=\frac{1}{2}(1-\sqrt{5})$. Then we obtain

$$
\begin{aligned}
y(t) & =-\left(1+\phi_{2}\right)(\sqrt{5})^{-1}\left(\sum_{n=0}^{\infty} \frac{\left(-\phi_{1} t\right)^{n}}{n!}\right)+\left(1+\phi_{1}\right)(\sqrt{5})^{-1}\left(\sum_{n=0}^{\infty} \frac{\left(-\phi_{2} t\right)^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\sqrt{5}}\left(\phi_{1}^{n-2}-\phi_{2}^{n-2}\right) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} F_{-n+1} \frac{t^{n}}{n!},
\end{aligned}
$$

since $\left(1+\phi_{2}\right) \phi_{1}^{2}=1$ and $\left(1+\phi_{1}\right) \phi_{2}^{2}=1$. Notice that

$$
\begin{equation*}
y^{\prime}(t)=\sum_{n=0}^{\infty} F_{-n} \frac{t^{n}}{n!} \quad \text { and } \quad y^{\prime \prime}(t)=\sum_{n=0}^{\infty} F_{-n-1} \frac{t^{n}}{n!} . \tag{7}
\end{equation*}
$$

Now it is straightforward to show that for the solution $x(t)$ of (4) we have $x(t)=x_{h}(t)+x_{p}(t)=\left(c-x_{p}(0)\right) y^{\prime}(t)+\left(d-x_{p}^{\prime}(0)\right) y^{\prime \prime}(t)+x_{p}(t)$, which yields together with (7) the desired equality (6).

From Proposition 1.1 it is clear that we now need a particular solution of (4). As in [1] and [2] we distinguish two cases, viz. $p(t)$ is a polynomial (Section 2) and $p(t)$ is a factorial polynomial (Section 3).

2. Polynomials

Throughout this section, we assume that $p(t)$ is an ordinary or power polynomial

$$
p(t)=\sum_{i=0}^{k} \alpha_{i} t^{i} .
$$

As a particular solution of (4) we try

$$
x_{p}(t)=\sum_{i=0}^{k} A_{i} t^{i}
$$

For $p(t)$ and $x_{p}(t)$, we write

$$
p(t)=\sum_{i=0}^{k} \beta_{i} \frac{t^{i}}{i!} \quad \text { and } \quad x_{p}(t)=\sum_{i=0}^{k} B_{i} \frac{t^{i}}{i!},
$$

respectively, where $\beta_{i}=i!\alpha_{i}$ and $B_{i}=i!A_{i}$ for each $i(0 \leq i \leq k)$. Hence, (4) yields

$$
\sum_{i=0}^{k-2} B_{i+2} \frac{t^{i}}{i!}+\sum_{i=0}^{k-1} B_{i+1} \frac{t^{i}}{i!}-\sum_{i=0}^{k} B_{i} \frac{t^{i}}{i!}=\sum_{i=0}^{k} \beta_{i} \frac{t^{i}}{i!} .
$$

From a comparison of the coefficients of $t^{i} / i!$, it follows that

$$
\begin{aligned}
B_{k} & =-\beta_{k} \\
B_{k-1} & =-\beta_{k-1}-\beta_{k} \\
B_{i} & =-\beta_{i}+B_{i+2}+B_{i+1}, \text { for } 0 \leq i \leq k-2
\end{aligned}
$$

Thus, we can successively compute $B_{k}, B_{k-1}, \ldots, B_{0} ; B_{i}$ is a linear combination of $\beta_{i}, \ldots, \beta_{k}$. Therefore, we write

$$
B_{i}=-\sum_{j=i}^{k} \alpha_{i j} \beta_{j}
$$

(cf. [1] and [2]), which gives

$$
-\sum_{j=i}^{k} a_{i j} \beta_{j}=-\beta_{i}-\sum_{j=i+2}^{k} a_{i+2, j} \beta_{j}-\sum_{j=i+1}^{k} a_{i+1, j} \beta_{j}
$$

Comparing the coefficients of β_{j} yields the following difference equation for each $j(1 \leq j \leq k)$:

$$
\alpha_{i, j}=\alpha_{i+2, j}+\alpha_{i+1, j}, \quad \text { for } j-i \geq 2
$$

where $a_{j j}=a_{j-1, j}=1$. But this means that

$$
a_{i j}=F_{j-i}, \quad \text { for } 0 \leq i \leq j
$$

and hence

$$
x_{p}(t)=\sum_{i=0}^{k} B_{i} \frac{t^{i}}{i!}=-\sum_{i=0}^{k} \sum_{j=i}^{k} F_{j-i j}!\alpha_{j} \frac{t^{i}}{i!}=-\sum_{j=0}^{k} \alpha_{i}\left(\sum_{i=0}^{j} j(j-i) F_{j-i} t^{i}\right)
$$

which implies

$$
x_{p}(0)=B_{0}=-\sum_{j=0}^{k} j!F_{j} \alpha_{j} \quad \text { and } \quad x_{p}^{\prime}(0)=B_{1}=-\sum_{j=1}^{k} j!F_{j-1} \alpha_{j}
$$

These equalities together with Proposition 1.1 yield the following proposition.

TABLE 1

j	$p_{j}(t)$
0	$t+1$
1	1
2	$t^{2}+2 t+4$
3	$t^{3}+3 t^{2}+12 t+18$
4	$t^{4}+4 t^{3}+24 t^{2}+72 t+120$
5	$t^{5}+5 t^{4}+40 t^{3}+180 t^{2}+600 t+960$
6	$t^{7}+7 t^{6}+84 t^{5}+630 t^{4}+4200 t^{3}+20160 t^{2}+65520 t+105840$
7	$t^{8}+8 t^{7}+112 t^{6}+1008 t^{5}+8400 t^{4}+53760 t^{3}+262080 t^{2}+846720 t+$
8	+1370880
9	$t^{9}+9 t^{8}+144 t^{7}+1512 t^{6}+15120 t^{5}+120960 t^{4}+786240 t^{3}+3810240 t^{2}+$
	$+12337920 t+19958400$

Proposition 2.1: The solution of (4) with $x(0)=c, x^{\prime}(0)=d$, and

$$
p(t)=\sum_{i=0}^{k} \alpha_{i} t^{i}
$$

can be expressed as

$$
x(t)=\left(c+L_{k}\right)\left(\sum_{n=0}^{\infty} F_{-n} \frac{t^{n}}{n!}\right)+\left(d+\ell_{k}\right)\left(\sum_{n=0}^{\infty} F_{-n-1} \frac{t^{n}}{n!}\right)-\sum_{j=0}^{k} \alpha_{j} p_{j}(t)
$$

where L_{k} and ℓ_{k} are linear combinations of $\alpha_{0}, \ldots, \alpha_{k}$, and for each j ($0 \leq j \leq$ $k), p_{j}(t)$ is a polynomial of degree j :

$$
L_{k}=\sum_{j=0}^{k} j!F_{j} \alpha_{j} ; \quad \ell_{k}=\sum_{j=1}^{k} j!F_{j-1} \alpha_{j} ; \quad p_{j}(t)=\sum_{i=0}^{j} j(j-i) F_{j-i} t^{i}
$$

The polynomials $p_{j}(t)$ are given in Table 1 above for $j=0,1,2, \ldots, 9$.
The coefficients of α_{j} in L_{k} and ℓ_{k} are independent of k; cf. [1] and [2]. They give rise to two infinite sequences L and ℓ of natural numbers not mentioned in [4]) as k tends to infinity. The first few elements of these new sequences are

$$
\begin{array}{ll}
L: & 1,1,4,18,120,960,9360,105840,1370880,19958400, \ldots, \\
\ell: & 0,1,2,12,72,600,5760,65520,846720,12337920, \ldots .
\end{array}
$$

3. Factorial Polynomials

This section is devoted to the case in which $p(t)$ is a factorial polynomial

$$
p(t)=\sum_{i=0}^{k} \alpha_{i} t^{(i)}
$$

In order to try

$$
\begin{equation*}
x_{p}(t)=\sum_{i=0}^{k} A_{i} t^{(i)} \tag{8}
\end{equation*}
$$

as a particular solution of (4), we first ought to determine the derivative of $t^{(n)}$.
Lemma 3.1: $\frac{d t^{(n)}}{d t}=\sum_{k=0}^{n-1}\binom{n}{k} t^{(k)}(-1)^{(n-k-1)}$.
Proof: The argument is by induction on n. The basis of which ($n=1$) is trivial. Suppose the equality holds for $n-1$:

$$
\begin{equation*}
\frac{d t^{(n-1)}}{d t}=\sum_{k=0}^{n-2}\binom{n-1}{k} t^{(k)}(-1)^{(n-k-2)} \tag{9}
\end{equation*}
$$

To perform the induction step, consider

$$
d t^{(n)} / d t=d\left(t(t-1)^{(n-1)}\right) / d t=(t-1)^{(n-1)}+t d\left((t-1)^{(n-1)}\right) / d t
$$

Now, by the Chain Rule, we have

$$
d\left((t-1)^{(n-1)}\right) / d t=d\left((t-1)^{(n-1)}\right) / d(t-1)
$$

Applying the Binomial Theorem from [2] to $(t-1)^{(n-1)}$ and the induction hypothesis (9) yields:

FIBONACCI-LIKE DIFFERENTIAL EQUATIONS WITH A POLYNOMIAL NONHOMOGENEOUS PART

$$
\begin{aligned}
\frac{d t^{(n)}}{d t} & =\sum_{k=0}^{n-1}\binom{n-1}{k} t^{(k)}(-1)^{(n-k-1)}+t \sum_{k=0}^{n-2}\binom{n-1}{k}(t-1)^{(k)}(-1)^{(n-k-2)} \\
& =(-1)^{(n-1)}+\sum_{k=1}^{n-1}\binom{n-1}{k} t^{(k)}(-1)^{(n-k-1)}+\sum_{k=1}^{n-1}\binom{n-1}{k-1} t^{(k)}(-1)^{(n-k-1)} \\
& =(-1)^{(n-1)}+\sum_{k=1}^{n-1}\binom{n}{k} t^{(k)}(-1)^{(n-k-1)}=\sum_{k=0}^{n-1}\binom{n}{k} t^{(k)}(-1)^{(n-k-1)}
\end{aligned}
$$

which completes the induction. \square
From Lemma 3.1, (4), and (8), we obtain

$$
\begin{aligned}
& \sum_{i=2}^{k} A_{i}\left(\sum_{m=1}^{i-1}\binom{i}{m}\left(\sum_{\ell=0}^{m-1}\binom{m}{\ell} t^{(\ell)}(-1)^{(m-\ell-1)}\right)(-1)^{(i-m-1)}\right) \\
&+\sum_{i=1}^{k} A_{i}\left(\sum_{m=0}^{i-1}\binom{i}{m} t^{(m)}(-1)^{(i-m-1)}\right)-\sum_{i=0}^{k} A_{i} t^{(i)}=\sum_{i=0}^{k} \alpha_{i} t^{(i)}
\end{aligned}
$$

Comparing the coefficients of $t^{(i)}$ yields

$$
\begin{aligned}
A_{k}= & -\alpha_{k}, \\
A_{k-1}= & -\alpha_{k-1}+k \alpha_{k}, \\
A_{i}= & -\alpha_{i}+\sum_{n=i+1}^{k} A_{n}\binom{n}{i}(-1)^{(n-i-1)} \\
& +\sum_{n=i+2}^{k} A_{n}\left(\sum_{m=i+1}^{n-1}\binom{n}{m}\binom{m}{i}(-1)^{(m-i-1)}(-1)^{(n-m-1)}\right)
\end{aligned}
$$

for each $i(0 \leq i \leq k-2)$. As $(-x)^{(n)}=(-1)^{n}(x+n-1)^{(n)}$ and $n^{(n)}=n$!, this latter recurrence can be rewritten as

$$
\begin{aligned}
A_{i}=-\alpha_{i} & +\sum_{n=i+1}^{k} A_{n}(-1)^{n-i-1} \frac{n^{(n-i)}}{n-i} \\
& +\sum_{n=i+2}^{k} A_{n}\left(\sum_{m=i+1}^{n-1}(-1)^{n-i-2} \frac{n^{(n-i)}}{(n-m)(m-i)}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
A_{i}=-\alpha_{i}+(i+1) A_{i+1}+\sum_{n=i+2}^{k} \zeta_{i n} A_{n} \tag{10}
\end{equation*}
$$

where

$$
\zeta_{i n_{1}}=(-1)^{n-i-1_{n}(n-i)}\left((n-i)^{-1}-\sum_{m=i+1}^{n-1}(n-m)^{-1}(m-i)^{-1}\right)
$$

Now (10) enables us to compute $A_{k}, \ldots, A_{0}: A_{i}$ iș a linear combination of α_{i}, \ldots, α_{k}. Thus

$$
A_{i}=-\sum_{j=i}^{k} b_{i j} \alpha_{j}
$$

and (10) becomes

$$
\sum_{j=i}^{k} b_{i j} \alpha_{j}=\alpha_{i}+(i+1) \sum_{j=i+1}^{k} b_{i+1, j} \alpha_{j}+\sum_{n=i+2}^{k} \zeta_{i n} \sum_{j=n}^{k} b_{n j} \alpha_{j}
$$

From the coefficients of α_{j}, it follows that

$$
b_{i i}=1
$$

Hence,

$$
\begin{aligned}
b_{i, i+1} & =i+1, \\
b_{i j} & =(i+1) b_{i+1, j}+\sum_{n=i+2}^{j} \zeta_{i n} b_{n j} \quad \text { for } j \geq i+2 .
\end{aligned}
$$

and

$$
x_{p}(t)=-\sum_{i=0}^{k} \sum_{j=i}^{k} b_{i j} \alpha_{j} t^{(i)}=-\sum_{j=0}^{k} \alpha_{j}\left(\sum_{i=0}^{j} b_{i j} t^{(i)}\right)
$$

$$
x_{p}^{\prime}(t)=-\sum_{j=1}^{k} \alpha_{j}\left(\sum_{i=1}^{j} b_{i j}\left(\sum_{\ell=0}^{i-1}\binom{i}{\ell} t^{(\ell)}(-1)^{(i-\ell-1)}\right)\right) .
$$

Since

$$
x_{p}(0)=-\sum_{j=0}^{k} b_{0 j} \alpha_{j} \quad \text { and } \quad x_{p}^{\prime}(0)=-\sum_{j=1}^{k}\left(\sum_{i=1}^{j}(-1)^{(i-1)} b_{i j}\right) \alpha_{j},
$$

we have the following result.
Proposition 3.2: The solution of (4) with $x(0)=c, x^{\prime}(0)=d$, and

$$
p(t)=\sum_{i=0}^{k} \alpha_{i} t^{(i)}
$$

can be expressed as

$$
x(t)=\left(c+M_{k}\right)\left(\sum_{n=0}^{\infty} F_{-n} \frac{t^{n}}{n!}\right)+\left(d+m_{k}\right)\left(\sum_{n=0}^{\infty} F_{-n-1} \frac{t^{n}}{n!}\right)-\sum_{j=0}^{k} \alpha_{j} \pi_{j}(t),
$$

where M_{k} and m_{k} are linear combinations of $\alpha_{0}, \ldots, \alpha_{k}$, and for each j ($0 \leq j \leq$ $k), \pi_{j}(t)$ is a factorial polynomial of degree j :

$$
M_{k}=\sum_{j=0}^{k} b_{0 j} \alpha_{j} ; \quad m_{k}=\sum_{j=1}^{k}\left(\sum_{i=1}^{j}(-1)^{(i-1)} b_{i, j}\right) \alpha_{j} ; \quad \pi_{j}(t)=\sum_{i=0}^{j} b_{i j} t^{(i)} .
$$

For $j=0,1, \ldots, 9$, the factorial polynomials $\pi_{j}(t)$ are given in Table 2 .
TABLE 2

j	$\pi_{j}(t)$
0	1
1	$t^{(1)}+1$
2	$t^{(2)}+2 t^{(1)}+3$
3	$t^{(3)}+3 t^{(2)}+9 t^{(1)}+8$
4	$t^{(4)}+4 t^{(3)}+18 t^{(2)}+32 t^{(1)}+50$
5	$t^{(6)}+6 t^{(5)}+45 t^{(4)}+160 t^{(3)}+750 t^{(2)}+1284 t^{(1)}+2086$
6	$t^{(7)}+7 t^{(6)}+63 t^{(5)}+280 t^{(4)}+1750 t^{(3)}+4494 t^{(2)}+14602 t^{(1)}+11976$
7	$t^{(8)}+8 t^{(7)}+84 t^{(6)}+448 t^{(5)}+3500 t^{(4)}+11984 t^{(3)}+58408 t^{(2)}+$
8	$+95808 t^{(1)}+162816$
9	$t^{(9)}+9 t^{(8)}+108 t^{(7)}+672 t^{(6)}+6300 t^{(5)}+26964 t^{(4)}+175224 t^{(3)}+$
	$+431136 t^{(2)}+1465344 t^{(1)}+1143576$

As in the previous section and [1] and [2], the coefficients of α_{j} in M_{k} and m_{k} are independent of k. The first few elements of the limit sequences (not mentioned in [4]) M and m (obtained from M_{k} and m_{k} for $k \rightarrow \infty$) are

$$
M: \quad 1,1,3,8,50,214,2086,11976,162816,1143576, \ldots,
$$

$$
m: \quad 0,1,1,8,16,224,608,13320,41760,1366152, \ldots .
$$

Finally, we remark that the coefficients $b_{i j}$ (and hence the elements of the sequences M and m) can also be computed from $\alpha_{i j}$ by means of

$$
b_{i j}=\sum_{m=i}^{j} S(i, m)\left(\sum_{\ell=m}^{j} a_{m \ell} s(\ell, j)\right) \quad(i \leq j),
$$

where $s(\ell, j)$ and $S(i, m)$ are Stirling numbers of the first and of the second kind, respectively.

Acknowledgments

I am indebted to Bert Jagers for some useful discussions and in particular to the referee for suggesting an alternative approach which resulted in a more concise and less complicated version of this paper.

References

1. P. R. J. Asveld. "A Family of Fibonacci-Like Sequences." Fibonacci Quarter2y 25.1 (1987):81-83.
2. P. R. J. Asveld. "Another Family of Fibonacci-Like Sequences." Fibonacci Quarterly 25.4 (1987):361-364.
3. M. Braun. Differential Equations and Their Applications. 3rd ed., Applied Mathematical Sciences 15. New York-Heidelberg-Berlin: Springer-Verlag, 1983.
4. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
5. J. C. Turner. "Note on a Family of Fibonacci-Like Sequences." Fibonacci Quarterly 27.3 (1989):229-232.
