ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. Hillman

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108.

Each solution should be on a separate sheet (or sheets) and must be received within six months of publication of the problem. Solutions typed in the format used below will be given preference. Proposers of problems should include solutions.

Anyone desiring acknowledgment of contributions should enclose a stamped, self-addressed card (or envelope).

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
$F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ;$
$L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$.
Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

B-652 Proposed by Herta T. Freitag, Roanoke, VA
Let $\alpha=(1+\sqrt{5}) / 2$,

$$
S_{1}(n)=\sum_{k=1}^{n} \alpha^{k} \quad \text { and } \quad S_{2}(n)=\sum_{k=1}^{n} \alpha^{-k}
$$

Determine m as a function of n such that $\frac{S_{1}(n)}{S_{2}(n)}-\alpha F_{m}$ is a Fibonacci number.
B-653 Proposed by Herta T. Freitag, Roanoke, VA
The sides of a triangle are $\alpha=F_{2 n+3}, b=F_{n+3} F_{n}$, and $c=F_{3} F_{n+2} F_{n+1}$, with n a positive integer.
(i) Is the triangle acute, right, or obtuse?
(ii) Express the area as a product of Fibonacci numbers.

B-654 Proposed by Alejandro Necochea, Pan American U., Edinburgh, TX
Sum the infinite series

$$
\sum_{k=1}^{\infty} \frac{1+2^{k}}{2^{2 k}} F_{k}
$$

B-655 Proposed by L. Kuipers, Sierre, Switzerland
Prove that the ratio of integers x / y such that

$$
\frac{F_{2 n}}{F_{2 n+2}}<\frac{x}{y}<\frac{F_{2 n+1}}{F_{2 n+3}}
$$

and with smallest denominator y is $\left(F_{2 n}+F_{2 n+1}\right) /\left(F_{2 n+2}+F_{2 n+3}\right)$.
B-656 Proposed by Richard André-Jeannin, Sfax, Tunisia
Find a closed form for the sum

$$
S_{n}=\sum_{k=0}^{n} w_{k} p^{n-k},
$$

where w_{n} satisfies $w_{n}=p w_{n-1}-q w_{n-2}$ for n in $\{2,3, \ldots\}$, with p and q nonzero constants.

B-657 Proposed by Clark Kimberling, U. of Evansville, Evansville, IN
Let m be an integer and $m \geq 3$. Prove that no two of the integers

$$
k\left(m F_{n}+F_{n-1}\right) \text { for } k=1,2, \ldots, m-1 \text { and } n=0,1,2, \ldots
$$

are equal. Here $F_{-1}=1$.

SOLUTIONS

Average Age of Fibonacci's Rabbits

B-628 Proposed by David Singmaster, Polytechnic of the South Bank, London, England

What is the present average age of Fibonacci's rabbits? (Recall that he introduced a pair of mature rabbits at the beginning of his year and that rabbits mature in their second month. Further, no rabbits died. Let us say that he did this at the beginning of 1202 and that he introduced a pair of 1 -monthold rabbits. At the end of the first month, this pair would have matured and produced a new pair, giving us a pair of 2 -month-old rabbits and a pair of 0 -month-old rabbits. At the end of the second month we have a pair of 3 -monthold rabbits and pairs of 1 -month-old and of 0 -month-old rabbits.) Before solving the problem, make a guess at the answer.

Solution by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
The solution to this problem is rather amazing. If n is the number of months within the interval (1st Jan. $1202-1^{\text {st }}$ Nov. 1988), then the number of pairs of Fibonacci rabbits in the enclosure is currently F_{n+1}. On the basis of the growth rule, their average age A_{n} (in months) is

$$
\begin{equation*}
A_{n}=\left(n+\sum_{i=1}^{n-2} i F_{n-1-i}\right) F_{n+1} . \tag{1}
\end{equation*}
$$

By using the identity

$$
\begin{equation*}
\sum_{i=1}^{N} i F_{k-i}=F_{k+3}-(N+2) F_{k-N+1}-F_{k-N} \tag{2}
\end{equation*}
$$

the proof of which is omitted in this context, we can evaluate (1)
(3) $\quad A_{n}=\left(n+F_{n+2}-n F_{2}-F_{1}\right) / F_{n+1}=\left(F_{n+2}-1\right) / F_{n+1}$.

Since n is sufficiently large (> 9000), we have

$$
A_{n} \approx \alpha=(1+\sqrt{5}) / 2 \text { months. }
$$

Also solved by Charles Ashbacher, Paul Bruckman, John Cannell, Carl Libis, and the proposer.

Always at Least One Solution

B-629 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN
For which integers a, b, and c is it possible to find integers x and y satisfying

$$
(x+y)^{2}-c x^{2}+2(b-a+a c) x-2(a-b) y+(a-b)^{2}-c a^{2}=0 ?
$$

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA
We prove more than what is asked; namely, for every possible choice of the ordered triple (α, b, c), we find the corresponding solution (x, y) satisfying the given equation.

The given equation can be written as:

$$
(x+y)^{2}-2(a-b)(x+y)+(a-b)^{2}=c(x-a)^{2}
$$

or $\quad[(x+y)-(a-b)]^{2}=c(x-a)^{2}$
or $\quad[(x-a)+(y+b)]^{2}=c(x-a)^{2}$
The following cases are possible:
(i) If $c=0$, then (x, y) takes infinitely many integral values, namely, $(x, a-b-x)$ where a, b, x are arbitrary integers.

Thus, with a, b as arbitrary integers and $c=0$ the corresponding solution is
($x, a-b-x$) where x is any integer.
(ii) If $x=a$, then $y=-b$ and c can be any arbitrary integer. Hence, with any choice of integral values of a, b and arbitrary integer c, we have $(a,-b)$ as the solution for (x, y).
(111) If $x \neq a, c \neq 0$, then it follows that c must be the square of an integer and $(x-a)$ must divide $(y+b)$. Consequently, if $c=n^{2}$ where n is a positive integer, then with a, b as arbitrary integers and $c=n^{2}$, we get two possible integral solutions:
$[x,(n-1)(x-a)-b]$ and $[x,-(n+1)(x-a)-b]$
for (x, y) where x is an arbitrary integer.
Also solved by Paul Bruckman, L. Kuipers, Amitabha Tripathi, and the proposer.

Golden Geometric Progression

B-630 Proposed by Herta T. Freitag, Roanoke, VA
Let a and b be constants and define the sequences

$$
\left\{A_{n}\right\}_{n=1}^{\infty} \quad \text { and } \quad\left\{B_{n}\right\}_{n=1}^{\infty}
$$

by $A_{1}=a, A_{2}=b, B_{1}=2 b-a, B_{2}=2 a+b$, and $A_{n}=A_{n-1}+A_{n-2}$ and $B_{n}=B_{n-1}$ $+B_{n-2}$ for $n \geq 3$.
(i) Determine a and b so that $\left(A_{n}+B_{n}\right) / 2=[(1+\sqrt{5}) / 2]^{n}$.
(ii) For these a and b, obtain $\left(B_{n}+A_{n}\right) /\left(B_{n}-A_{n}\right)$.

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY
(i) Since $C_{n}=\left(A_{n}+B_{n}\right) / 2$ satisfies the second-order recurrence relation $C_{n}=C_{n-1}+C_{n-2}$ for $n \geq 3$,
C_{1} and C_{2} determine the sequence $\left\{C_{n}\right\}_{n=1}^{\infty}$. Solving the system of equations

$$
\begin{aligned}
& b=C_{1}=(1+\sqrt{5}) / 2 \\
& a+b=C_{2}=[(1+\sqrt{5}) / 2]^{2}=(3+\sqrt{5}) / 2
\end{aligned}
$$

we obtain $a=1$ and $b=(1+\sqrt{5}) / 2$.
(ii) For these a and b, we have

$$
B_{1}=\sqrt{5}=\sqrt{5} A_{1} \quad \text { and } \quad B_{2}=(5+\sqrt{5}) / 2=\sqrt{5} A_{2} .
$$

So

$$
B_{n}=\sqrt{5} A_{n} \quad \text { and } \quad\left(B_{n}-A_{n}\right) / 2=[(\sqrt{5}-1) / 2] A_{n} \text { for all } n \geq 1
$$

Thus,

$$
\left(B_{n}+A_{n}\right) / 2=[(\sqrt{5}+1) / 2] A_{n}
$$

and

$$
\frac{B_{n}+A_{n}}{B_{n}-A_{n}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\left(\frac{\sqrt{5}+1}{2}\right)^{2} .
$$

Also solved by Charles Ashbacher, Paul Bruckman, Russell Euler, Piero Filipponi, L. Kuipers, Carl Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Amitabha Tripathi, and the proposer.

Closed Form

B-631 Proposed by L. Kuipers, Sierre, Switzerland
For N in $\{1,2, \ldots\}$ and $N \geq m+1$, obtain, in closed form,

$$
u_{N}=\sum_{k=m+1}^{m+N} k(k-1) \cdots(k-m)(n+k) .
$$

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

$$
\begin{aligned}
u_{N}=\frac{1}{n!} \sum_{k=m+1}^{m+N} \frac{(n+k)!}{(k-m-1)!} & =\frac{(n+m+1)!}{n!} \sum_{k=m+1}^{m+N}\binom{n+k}{n+m+1} \\
& =\frac{(n+m+1)!}{n!}\binom{n+m+N+1}{n+m+2}
\end{aligned}
$$

Also solved by Paul Bruckman, Odoardo Brugia \& Piero Filipponi, and the proposer.

Golden Determinant

B-632 Proposed by H.-J. Seiffert, Berlin, Germany

```
    Find the determinant of the }n\mathrm{ by n matrix ( }\mp@subsup{x}{ij}{\prime}\mathrm{ ) with }\mp@subsup{x}{ij}{}=(1+\sqrt{}{5})/2\mathrm{ for
j>i, }\mp@subsup{x}{ij}{}=(1-\sqrt{}{5})/2\mathrm{ for }j<i, and \mp@subsup{x}{ij}{}=1\mathrm{ for }\mp@subsup{\mp@code{j}}{j}{=}=i
```

Solution by Hans Kappus, Rodersdorf, Switzerland
More generally, let us determine the characteristic polynomial

$$
f_{n}(t)=\operatorname{det}\left(x_{i j}-t \delta_{i j}\right)
$$

Subtracting the $(n-i)^{\text {th }}$ line from the $(n-i+1)^{\text {th }}$ line $(i=1, \ldots, n-1)$ we obtain the determinant

$$
f_{n}(t)=\left|\begin{array}{llll}
1-t & \alpha & \cdots & \alpha \\
\beta-1+t & 1-\alpha-t & \cdots & 0 \\
0 & \beta-1+t & \cdots & 0 \\
0 & \vdots & & \vdots \\
\vdots & 0 & \cdots & \beta-1+t \\
0 & & 1-\alpha-t
\end{array}\right|
$$

which, after expanding with respect to the $n^{\text {th }}$ column, may be written as

$$
\begin{aligned}
f_{n}(t) & =\alpha(1-\beta-t)^{n-1}+(1-\alpha-t) f_{n-1}(t) \\
& =\alpha(\alpha-t)^{n-1}+(\beta-t) f_{n-1}(t) .
\end{aligned}
$$

Because of symmetry, we may interchange α and β and eliminate $f_{n-1}(t)$. Thus, we arrive at

$$
\begin{aligned}
f_{n}(t) & =(1 / \sqrt{5})\left\{\alpha(\alpha-t)^{n}-\beta(\beta-t)^{n}\right\} \\
& =\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{\alpha^{k+1}-\beta^{k+1}}{\sqrt{5}} t^{n-k}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} F_{k+1} t^{n-k} .
\end{aligned}
$$

Therefore, the solution to the original problem is given by $f_{n}(0)=F_{n+1}$.
Editor's Note: Bob Prielipp pointed out that B-632 is a special case of the determinant of Problem A-2 of the 1978 W. L. Putnam Mathematical Competition. (The solution is in American Mathematical Monthly, Nov. 1979, p. 753.)

Also solved by Paul Bruckman, Odoardo Brugia \& Piero Filipponi, Russell Euler, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Bob Prielipp, Sahib Singh, Amitabha Tripathi, and the proposer.

Ratio of Series

B-633 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $n \geq 2$ be an integer and define

$$
A_{n}=\sum_{k=0}^{\infty} \frac{F_{k}}{n^{k}}, \quad B_{n}=\sum_{k=0}^{\infty} \frac{L_{k}}{n^{k}} .
$$

Prove that $B_{n} / A_{n}=2 n-1$.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI

$$
F_{k}=\left(\alpha^{k}-\beta^{k}\right) / \sqrt{5}
$$

and

$$
L_{k}=\alpha^{k}+\beta^{k} \text { where } \alpha=(1+\sqrt{5}) / 2 \text { and } \beta=(1-\sqrt{5}) / 2 \text {. }
$$

The infinite geometric series

$$
C_{n}=\sum_{k=0}^{\infty}\left(\frac{\alpha}{n}\right)^{k} \quad \text { and } \quad D_{n}=\sum_{k=0}^{\infty}\left(\frac{\beta}{n}\right)^{k}
$$

both converge since the absolute value of each of their common ratios is less than 1. (Notice that the condition $n \geq 2$ is needed to insure the convergence of the first series.) Thus,

$$
\begin{align*}
A_{n} & =\frac{1}{\sqrt{5}}\left(C_{n}-D_{n}\right)=\frac{1}{\sqrt{5}}\left(\frac{n}{n-\alpha}-\frac{n}{n-\beta}\right)=\frac{n}{\sqrt{5}} \frac{\alpha-\beta}{(n-\alpha)(n-\beta)} \tag{1}\\
& =\frac{n}{(n-\alpha)(n-\beta)} \text { since } \alpha-\beta=\sqrt{5}
\end{align*}
$$

and

$$
\begin{align*}
B_{n}=C_{n}+D_{n}=\frac{n}{n-\alpha}+\frac{n}{n-\beta} & =\frac{n(2 n-(\alpha+\beta))}{(n-\alpha)(n-\beta)} \tag{2}\\
& =\frac{n(2 n-1)}{(n-\alpha)(n-\beta)} \text { because } \alpha+\beta=1 .
\end{align*}
$$

Therefore, $B_{n} / A_{n}=2 n-1$.
Also solved by Paul Bruckman, Russell Euler, Herta T. Freitag, Jay Hendel, Hans Kappus, L. Kuipers, Carl Libis, H.-J. Seiffert, Sahib Singh, Amitabha Tripathi, and the proposer.

