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1. Introduction 

Many different approaches have been proposed to evaluate the sums of powers 
of consecutive integers, 

n 

r= 0 

Interest in these sums is very old: the Greeks, the Hindus, and the Arabs had 
rules for the first few cases. Modern interest in these sums goes back more 
than 350 years to Faulhaber's (1631) "Academia algebrae." Fermat (1636), 
Pascal (1654), Bernoulli (1713), Jacobi (1834), and many others have also 
considered this question. Recent contributions are due to Sullivan [1], 
Edwards [2], Scott [3], and Khan [4]. Sullivan uses a simple and elegant 
recursion formula to study this problem. Edwards and Scott make use of a 
matrix formulation which is very intimately connected to Pascal's triangle and 
the binomial theorem. Khan introduces a simple integral approach that can be 
presented in all generality with just a basic knowledge of calculus. The 
interested reader will find a textbook account in Jordan [5], for example. 

The purpose of the present note is to study sums of the type 
n 

r = 0 *, ' 

where ns k > 0 are integers and x is an arbitrary parameter (real or complex) . 
The sums of powers of consecutive integers can be obtained from our results, as 
a special case, by letting x -> 1. But since the latter sums (x = 1) have been 
studied extensively in the literature, the main emphasis of the present note 
will be on the former sums (x * 1). 

2. A Method for Evaluating ^2rkxr 

In this section, we present a calculus-based method for evaluating J2rkxr, 
To our knowledge, this approach has not been discussed before. An alternative 
approach is to use Sullivan's technique [1] by setting ar = xr, instead of 
ar = 1, in his expressions. However, after examination, it was found that this 
approach is not analytically as transparent as the present approach; thus, the 
details are not reported here. 

Let x * 1 be an arbitrary real or complex parameter, and note the follow-
ing identity, 

£ > r = (1 - xn + 1)/(l - x ) . (1) 
r = 0 
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By k s u c c e s s i v e a p p l i c a t i o n s of t he d i f f e r e n t i a l o p e r a t o r D = xd/dx t o bo th 
s i d e s of ( 1 ) , we immediately o b t a i n 

J2rkxr = Dk(l - xn + l)/(l - x). ( 2 ) 
v = 0 

For k = 0, (2) is to give back (1) and so we adopt the convention that r°  = 1 
for all r, including the case v = 0. The above formula provides a compact 
analytic expression for the desired sums. 

By observing that k applications of D on the right-hand side of (2) pro-
duces a result with a common denominator of (1- x)k+l

 s we define a set of poly-
nomials of degree n + k + 1, Qn+i(x; k); thus: 

£ rkxv = Qn+l(x; fc)/(l - x)k+1, (3) 
. , o 

with 
Qn+l(x; 0) = 1 - xn+l, (4) 

from (2) and (1). From this point on, the summation index will be r, unless 
otherwise specified. A recursion formula in k is obtained by noting that 

n n 
£ vk + lxv = D Y,rkxT. (5) 
o o 

Identifying each side of (5) with a ^-polynomial as given in (3) we get 

Qn + l(x; k + 1) = x[(l - x)Q7l+l(x; k) + (k + l)Qn + l(x; k)] (6) 

for k integer > 1; Qn+i(x; 0) is defined by (4), and a prime denotes differen-
tiation with respect to x. 

The first few ^-polynomials are: 

Qn+l(x; 1) = x - (n + l)xn+1 + ^xn+2; (7) 

Qn+l(x; 2) = a? + x2 - (n + l ) 2 ^ n + 1 + (2n2 + 2n - l)xn+2 - n2xn+3; 

Qn + l(x; 3) = x + l\x2 + x3 - (n + l)3xn+1 + (3n3 + 6n2 - 4)xn + 2 

- (3n3 + 3n2 - 3n + l)xn+3 + n3^n+4. 

3, General Properties of £ r k x r 

An inspection of (7) suggests that the ^-polynomials may be written as xn 

times a polynomial of degree k in n, plus a term which is n-independent. Con-
sequently, this property also holds for Hrkxr

s by (3). To see this more 
clearly, rewrite (2) as follows: 

xn + l 

£ rkx* = Dk r- - Dk —±—. (8) 
~ x - l x - 1 

The first term on the right-hand side generates xn times a polynomial of degree 
k in n and the second term generates a term which is independent of n. As a 
result, in an effort to display the n-dependence of the right-hand side as 
explicitly as possible, we rewrite (8) in the form 

£ rkxr = xnPk (x; n) + Rk (x), (9) 

where 

Pktel n) = £ a%\x)nr (10) 
v = 0 
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is a polynomial of degree k in n, with coefficients a^ which depend on x. The 
term R is independent of n and so, by setting n = 0 in (9), we find that Rk = 
-a^k\ except when k = 0. Indeed, because of our earlier convention that r°  be 
equal to 1 for all v > 0, the case k = 0 has to be handled differently. From 
(2), with k = 0, we find that 

RQ(x) = -II (x - 1) and a(0°} (x) = x/(x - 1) . 

Finally, with this restriction in mind, we rewrite (9) in the form 

n k 
Y,rkxr = xnY,^\x)nv - a(

Q
k\x) (11) 

0 r= 0 

and establish rules to obtain the coefficients a[kK To obtain these coeffi-
cients, we will use two different methods: A) a method of recursion on k; and 
B) a method of recursion on n. 

A) fe-Recursive Method: This method consists in assuming that the 'a^ s are 
known for some k. Then, by using (5), the next set of coefficients, a^+1) 5 is 

determined. By (5) and (9)-(ll), we get 

xnPk+l(x; n) - a<* + 1> = D[xnPk(x; n) - af\. (12) 

To reduce this expression, perform the derivative and get 

xn[PkJtl{x; n) - nPk(x; n) - DPk(x; n) ] = a(
0
k+l)(x) - Da{k\x)« (13) 

The right-hand side of (13) is independent of n but the left-hand side has a 
factor which grows exponentially with n. Consequently, for (13) to hold for 
all values of n, with x fixed but arbitrary, we must have 

4fc+1> = Da(
Q

k\ (14) 

Pk + 1 = nPk +DPk. (15) 

To reduce (15) further, define 

a$i E 0, a™ E 0, (16) 

and use (10) to get 

fc + i 
L ia{

r
k+i) (x) - a ; _ \ ( x ) - Da£\x)]nT = 0. (17) 

In o rde r for t h i s e x p r e s s i o n to hold for a l l n, w i th x f i xed but a r b i t r a r y , we 
must have 

a<fc + 1) = 4k\ + Da™. (18) 
Because of (16), the case v = 0 is consistent with (14) above; similarly, for 
v = k + 1, we get 

and so we conclude, from (3), that 

a(k\x) = x/(x - 1) (20) 

for all k9 including k = 0. One significant drawback of this fc-recursive 
approach is that all previous sums must be known in order to determine the kth 

one. Fortunately, however, using method B, it is possible to determine the kth 

sum independently from the others. 

404 [Nov. 



DERIVATION OF A FORMULA FOR Zrkxr 

B) I n d u c t i o n on ni By i n d u c t i o n on ns (10) and (11) g ive 

n + l 
E^xr = xn + lPk(x; n + 1) - a(*\x) (21) 

ors equivalently, 

(n + l)kxn+l = xn+lPk(x; n + 1) - xnPk (x; n). (22) 

With (10), this gives 

x{n + l)k = ̂ 4 k ) ( n + D r " E ^ V . (23) 
o o 

To simplify the notation in what follows, we will write av for av because the 
upper index k is kept fixed. 

Using the binomial expansion, (23) becomes 

E^-Z (i)nr - E a3n° = XE (An (24) 

For this equation to hold for all n, we must have equality of the coefficients 
of like powers of n on both sides; hence, 

ak = x/(x - 1), (25) 

as observed p r e v i o u s l y , and 

dy, = 

\rl . ^ , \r) 
j=r+l 

(26) 

for 0 < r < k - 1. We give here the first few ap's, for arbitrary k; ak is 
given by (25), and 

*k-l -kx/(x - l) 2, (27) 

ak_2 = k(k - l)x(x + l)/2(x - l) 3, 

ak_3 = -k{k - l)(k - 2)x(x2 + kx + l)/6(x - I)4. 

Others are determined readily using (26). 
To conclude this section, we extend (2) to negative values of n. To do so, 

first note that the right-hand side of (2) is well defined for all values of n, 
with k an integer > 0. For n = -1, the right-hand member of (2) is zero, so we 
adopt the convention that 

-l 
E rkxr = 0 for all x * 1 or 0. 
o 

For n an i n t e g e r > 2, we l e t 

i . e . , 

STrkxr E Dk(x-n+l _ l)/(x - 1 ) = -D
J 1 

n-l 

n-l - 1 

1 

E^1 
0 

n-l 

i 

with S = 0 on the right-hand side. 

x(i (28) 

(29) 
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Now set n - -1 in (11) to obtain ' / 

x-ltaf'i~lf-a^= 0, (30) 
0 

i.e., 
k 

(x - l)a(
Q

k) = £ (-l)ra^} for all x * 1. (31) 
l 

This interesting property can be observed in the special cases that follow. 

4. Interest ing Special Cases 

In this section, results for k = 1, 2, 3, 4, and 5 are presented. 

To begin with, we let x = 2 and find the following sums: 

j[>. 2r = 2[2n(n - 1) + 1]; 
o 

£ P 2 • 2P = 2[2n(n2 - In + 3) - 3]; 
o 

X p3 • 2r = 2[2n(n3 - 3n2 + 9n - 13) + 13]; (32) 
o 
n 
£ rk • 2r = 2{2n(nh - 4n3 + 18n2 - 52n - 75) + 75]; 
o 
n 
X > 5 • 2V = 2[2n(n5 - bnh + 30n3 - 130n2 + 375n - 541) + 541]. 
o 

There is an interesting regularity in the coefficients of n in the parentheses; 
for example, the absolute value of the coefficient of n°  is equal to the sum of 
the absolute values of the coefficients of all the higher-order terms. 

The second sum in (32) belongs to a class of sums where the summand r^xr is 
symmetric under the interchange of p and k; rk • kr. Such sums have an in-
trinsic appeal and we give a few examples below: 

E r 2 - 2r = -^[2n(n2 - 2n + 3) - 3]; 
o 12L 

£ p 3 • 3r = 4r [3 n (4n 3 - 6n2 + I2n - 11) + 11]; (33) 
o 2^ 
n ^ 
X ^ P 4 - 4r = —I-[4n(27?2i+ - 36n3 + 90n2 - 132n + 95) - 95]. 
o 3 

The case T,Qvl • 1P has to be handled differently because (1) does not hold for 
x = 1; we shall discuss this type of situation in C) below. 

Other interesting results are now given in A)-C). 

A) For x = -1: 

E ("DrP = \[{-Dn{2n + 1) - 1]; 
o q 
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E (-DrP2 = k(-Dn(n2 + «)] = (-1)" f>; (34) 
o z o 

X (-DI'P3 = ̂ [(-Dn(4n3 + 6n2 - 1) + 1]. 
o 

B) For x = £ imaginary, we get, for example, 

Y,irrz = \{in{n2 + In + i(l - n2)) - <L] . (35) 
o 

If the real and imaginary terms are gathered separately, for n even, two iden-
tities are obtained. The identity for the real terms gives -back the second 
equation of (34) and that for the imaginary terms gives the new identity, 

n/2-1 

E (-l)r(2r + l)2 = [(-ir/2(l - n2) - 1]. (36) 
o 

C) For x = 1: In order to obtain the sums of powers of consecutive integers, 
take the limit x -> 1 in (3) and get 

n Sfc+iOc; k) (-Dk+l dk + l 

V * - > i ( l - x ) k + 1 (Zc + 1)! x+i dxk + l ^ + 1' ' 

after k + 1 applications of lfH6pital?s rule. For /c = 0, 1, 2, 3, equations 
(7) give, respectively: 

d 
lim — Qn+l(x; 0) = -(n + 1); 
x ->• i ax 

d2 

lim — ^ ̂ n+1(x; 1) = n{n + 1) ; 

' ^ d* ( 3 8 ) 

lim — ^ Qn+ x(x; 2) = -n(n + 1) (2n + 1) ; 
a; -> i a2? 

d4 
,2 (-y, _|_ 1 \ 2 lim —-j- Qn+l(x; 3) = 6nz (n + 1)< 

x ->• 1 <2-^ 

Insertion of these results in (37) gives the expected results for the appropri-
ate sums. The present technique is, however, somewhat cumbersome to handle. 
Indeed, k derivatives are first required to find Qn+i(x; k) followed by k + 1 
additional ones in order to compute the limit. Cases with x = 1 can be handled 
easily with Khan's technique or by the method of induction on n presented 
earlier. Indeed, by observing, from (8), that 

lim Dk(xn+1 - l)/(x - 1) 
x + l 

is a polynomial of degree k + 1 in n, we may write 

E ** = "f>?}^ - ô (39) 
0 0 

and proceed as before. 
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