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signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE
H-437 Proposed by L. Kuipers, Sierre, Switzerland
Let x, y, n be Natural numbers, where n is odd. If
L,lL, o < x/y < L,41/Ly43, show that y > 1/5L, 4. (*)

Are there fractions, x/y, satisfying (%) for which y < L, ,?

H-438 Proposed by H.-J. Seiffert, Berlin, Germany

Define the Fibonacci polynomials by
Fo(z) =0, Fi(x) =1, F (x) = oF,_1(x) + F,_o(x), for n = 2.
Show that, for all odd integers n = 3,

e d.’t _m . m
.[@ ?;f57 = E(l + 1/cos n)'

H-439 Proposed by Richard Andre-Jeannin, ENIS BP.-W, Tunisia

Let p be a prime number (p # 2) and m a Natural number. Show that

szm + Lqpm + oo + L m = 0 (mod p7*tl).

(p-Dp
SOLUTIONS

Some Difference

H-414 Proposed by Larry Taylor, Rego Park, New York
(Vol. 25, no. 3, August, 1987)

Let J, k, m, and n be integers. Prove that

m+J
Fm+an+k = Fm+an+J- - Fk—-an—m(_]‘) I,
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Solution by Tad White, UCLA, Los Angeles, CA

The proof is by induction on each of the four variables. Let P(J, k, m, n)
denote the above equality. It is trivial to verify this equality for 7, k, m,
n € {0, 1}. We thus need only show that

(1) P(J -2, k’ n, 7’2) and P(J -1, k) m, n):@P(J’ k: ms 7’1), and
(ii) P(J + 2, k, my n) and P(j + 1, k, m, n) = P(j, k, m, n),

and similarly for the other three variables. The proofs are essentially iden-—
tical for each variable, so we will present only the induction on j here for
brevity.

Notice that the equality P(j, k, m, n) can be written in determinant form:

Fm+k Fm+j _—
= By iy (-1,

Fn+k Fn+j

Using the Fibonacci recursion relation, the determinant on the left can be
rewritten as

Fm+k Fm+j—l + Fm+j—2
n+k Fn+j—l + Fl’L+j—2

By linearity of the determinant in the second column, this is

Fm+k Fm+j—1 Fm+k Fm+j—2
Fovx  Fuvj-1 Fovr  Favg-2

which, by the induction hypothesis, equals
_1ym+g-1 _1ym+g=2

Fk—j+1Fn—m( Lymrd + Fk—-j+2Fn—m( 1y

= (Fr-j+2 = Fx-js1)Fnon(-1)""7

= m+g

- Fk—an—m(—l) 75
as required. The induction in the negative direction is the same, except that
one uses the Fibonacci recursion relation in the reverse direction.

Also solved by P. Bruckman, P. Filipponi, L. Kuipers, J. Mahon, F. Makri &
D. Antzoulakos, B. Prielipp, H.-J. Seiffert, and the proposer.

A Little Reciprocity

H-416 Proposed by Gregory Wulczyn, Bucknell U. (retired), Lewisburg, PA
(Vol. 25, no. 4, November, 1987)

S{E, 4 +F,_y) £ 1 (mod p),
(1) 1f (g) = 1, show that { P Pt

5,y = Fpyp) =1 (mod p).

5@, 1 + F,_1) = ~1 (mod p),
(2) 1f (?) = -1, show that { Pt F

'S(Lp+l - E%+1) = -1 (mod p).
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Solution by Lawrence Somer, Washington, D.C.

It is well known that
E%—(S/p) = 0 (mod p) and Fp = (5/p) (mod p).
It is also known that
Ly =Foy + Fuyq

It follows from the law of quadratic reciprocity that (p/5) = (5/p) if p is a
prime greater than 2.

(1) Suppose (p/5) = 1. Then p = 2. It follows that

E%-(S/p) = Eb—l 2 0 (mod p)
and
Py = (5/p) = 1 (mod p).
Then
E%+1 = Fp—l + Fp =0+1z=1 (mod p).
Thus,
. Lp-l = E%—Z +-Eb = (FE - Fp—l) + Fp =1 -0+1z=2 (mod p)
an
Lp+1 = E% +-E%+2 = Fp + (F% +-E%+1) =1+1+1z=3 (mod p).
Hence,
.S(Lp_1 + Fp—l) 2 .5(2+0) =1 (mod p)
and
'S(Lp+l - Eb+1) = .5(3-1) =1 (mod p).
(2) Assume that (p/5) = -1. First suppose that p = 2. Then
Lp—l =L, =1, Lp+1 =Ly =4, Fp-l =r =1, Fp+1 = Fy= 2.
Then
.S(Lp_1 + Fp—l) = ,5(1 + 1) = -1 (mod 2)
and
.S(Lp+l - Fp+1) = ,5(4 - 2) = -1 (mod 2).
Now suppose that p z 2. It follows that
Fp~(5/p) = Fp+l = 0 (mod p)
and
Fp z (5/p) = -1 (mod p).
Then
Fp_1 = Fp+l - E? =0 - (-1) =1 (mod p).
Hence,
. Lp—l =P, , +F, = (Fp - Fp_l) +F,=-1-1-1=2-3 (mod p)
an
Lp+1 = F, +Fp+2 =F, + #, +Fp+1) = -1+4 (1) +0 = -2 (mod p).
Thus,
'S(Lp—l + Fp_l) = .5(-3 + 1) £ -1 (mod p)
and
.S(Lp+1 - Fp+1) = .5(-2 - 0) = -1 (mod p).

Also solved by P. Bruckman, P. Filipponi, C. Georghiou, L. Kuipers, T.
White, and the proposer.
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A Mean Problem

H-417 Proposed by Piero Filipponi, Rome, Italy
(Vol. 25, no. 4, November, 1987)

Let G(n, m) denote the geometric mean taken over m consecutive Fibonacci
numbers of which the smallest is F,. It can be readily proved that

G(n, 2k + 1) k=1, 2, ...)
is not integral and is asymptotic to F,,; (as n tends to infinity).
Show that if n is odd (even), then G(n, 2k + 1) is greater (smaller) than
F, %> except for the case k = 2, where G(n, 5) < F, ., for every n.

Solution by Paul Bruckman, Edmonds, WA

1
2k
(1) G(n, 2k + 1) = ( HFn+j>2k+1.
=0
Hence, /
1 2k
1 Gn, 2k +1) = ———— 1 Fo.
o8& (ﬂ ) 2k + 1 JZ:O o8 ntyg
1 . -
= 1 }: (log a™*9 - % log 5 + log(l - (b/a)"™)
i=o
1 2k .
= a1 S ((n + §)log a - % log 5 + log(l - x"*d)),
i=o
where ¢ and b are the usual Fibonacci constants and & = b/a = -b2. (Note that
-1 < a2 < 0.) Thus, -
1 .
(2) log G(n, 2k + 1) = (n + k)log a - % log 5 + ——— D log(l - z"*J).
2k + 1 7=
Likewise,
(3) log Foup = (n + k)log a - % log 5 + log(l - z*F).

We now make the definition:

&) D, k) = 1og(ﬂ’?’—fz—k—ﬂ>.

n+k

Thus, it suffices to prove that D(n, k) > 0 if n is odd and D(n, k) < 0 if =n is
even, unless k = 2, in which case D(n, 2) < 0 for all =n.

Now, from (2) and (3), we have

1 2k )
5 D(n, = - pntd) - — pntk),
(5) (ns k) T 1J.Etﬁolog(l x"79) - log(l - x"™K)

Expanding into Maclaurin series, we obtain:

-1 2k = L. B .
D(n, k) = /——— 3 Y i~ L@t + 3 i~ l(xntk?
2k + 1;50 /5 i1
w o (2k+ DI
=2 i_lx"i<xki - ! (1 z f )1>>,
i=1 2k + 1 1 - x*
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or, after some simplification,

= ; -1* F ok
6 D(n, k) = L+t _ ( . v,
©) > R iz:ll * 2k + 1 F.

7

We consider the various possibilities:

Case 1. k is even, kK = 2. Then

o L (ntk)L
x Foryni
D(n, k) = - JR— :
( ) ,El 7 < 2k + DF; )’

if, moreover, n is even, (n + k) is even, and the last expression is clearly
negative (the first term vanishing if Xk = 2). If n is odd, then

r F
D(n, k) > bZn+2k<_%i<_+_1_ - l) __1/2bl+n+4k< Be+2 1>

2k + 1 2k + 1
SO
D(n, k) b2n+2k< a?k*l 1) 1 b‘-m+'+k< attk+2
My > —_— - - %
2k + 1)7/5 * ((2k + 1)V/5 - 1)>
a-(2n—l)
> EZEEﬁI~I;7§(2 - a—Qn—l)) - %b2n+2k(2 - b2n+2k)
- - - -1 -
> _Jz_iii_ii__(z - 41y - pnt2k > E_Ef__l;i_i - p2nt2k
2(2k + 1)vV5 202k + 1)
= bzn(Z%ji_E - b2k> >0 if k = 4 (since a2k > 4k + 2 if k 2 3).

Thus far, we have shown that
(7) D(n, k) < 0 if k and n are even;

D(n, k) > 0 if k 2 4 is even, n is odd.

Also, if »n is odd,

D(n, 2) = 3 i-lzn+2)i (1 - F5i> < _5p2n+h _ 90p3n+t6
=2 5F;
= —5x2nth(1 + 4xn*2) < -5x27FH(1 - 4b6) < 0.
Thus,
(8) D(n, 2) < 0 for all n.

Case 2. Kk is odd, k¥ = 3. Then

= ; -1 Foren:
= ol (nt k)T 1 - ( o >
D(n, k) iéll x ( %+ 1 7.

z

If n is odd,

2k+1
D(n, k) > b2"+2’<<1 + L) - %bh(n+k)< a

bk +2
. S |
(2k + 1)V5 (2k + 1)V/5 )

(continued)
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a” (2n-1) %
202k + 1)V/5

1
— =1y = 12n{H2k -
(2 -at) b (b + 7 2>

> 1/2b2(n+k) 2 + bz(n+k)) + - a (2n—l))

q~ (2n-1)

> p2(ntk) 4 G 7
202k +1) 5

If n is even,

Fore1 Fiurso
D 39 = 20001+ L) oDz Y
(s %) %+ 1) * % + 1

clearly, D(n, k) < 0 in this case. Therefore,

9) D(n, k) > 0 if k =2 3 and n are odd;

D(n, k) < 0 if k 2 3 is odd, and n is even.
Combining (7), (8), and (9) yields the desired conclusion:

(10) D(n, k) < 0, if n is even, k z 2;
D(n, k) > 0, if n is odd, k = 2;
D(n, 2) < 0 for all =n. Q.E.D.

Also solved by the proposer.
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