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Let {s%} be the sequence of sums of rth powers given by 

(1) 
k= 0 

These familiar sequences are the subject of an extensive literature, a few 
recent samples of which may be found among the references. The present note 
has two objectives: 

® To illustrate the application of matrix methods in the context of finite 
difference equations; and 

• To publicize the following beautiful matrix formula for s^. 
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This equation may be viewed as reducing the sum of n terms of the power se-
quence to a linear combination of the first r + 1 terms. Accordingly, there is 
an implicit assumption that n > v. Note that the matrix appearing as the 
middle factor on the right side of this equation is lower triangular. The 
zeros that should appear above the main diagonal have been omitted. The non-
zero entries constitute a version of Pascal's triangle with alternating signs. 

The scalar equivalent of equation (2) has appeared previously ([4], eq. 57, 
p. 33) and can be derived by standard elementary manipulations of series expan-
sions for exponential functions. The main virtue of the matrix form is esthe-
tic: it reveals a nice connection between s^ and Pascal's triangle, and is 
easily remembered. 

The main idea we wish to present regarding the application of matrix analy-
sis to difference equations may be summarized as follows. In general, an nth-
order difference equation with constant coefficients is expressible as a first-
order vector equation. The solution of this first-order vector equation is 
given in terms of powers of the coefficient matrix. By reducing the coeffi-
cient matrix to its Jordan canonical form, the powers can be explicitly 
calculated, finally leading to a formula for a solution to the original 
difference equation. This approach was discussed previously [5] for the case 
in which the matrix is diagonalizable. In applying this method to the deriva-
tion of (2), the matrix is not diagonalizable. Another example with a non-
diagonalizable matrix will also be presented, connected with reference [3]. 

In the interest of completeness, a few results about linear difference 
equations will be presented. These can also be found in any introductory text 
on the subject, for example [8]. 
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1. Elementary Results about Difference Equations 

The sequence s^ satisfies the recursive relation 

This is an example of a difference equation* It expresses one term of a 
sequence as a function of the preceding term* and the sequence index n. More 
generally, a difference equation of order k specifies a term of a sequence {an} 
as a function of the preceding k terms and n. We shall be especially concerned 
with linear, constant coefficient, homogeneous difference equations. Any equa-
tion of this type can be cast in the form 

(3) an+k + ok_lan+k.l + ... + cQan = 0 ; n > 0, 
where the coefficients Cj are constants. Hereafter, we assume all difference 
equations are of this type. Clearly, given initial terms ag through a^-i* the 
remaining terms of the sequence are uniquely determined by equation (3) . The 
main objective of the next section is to develop techniques to express these 
terms as a function of n. 

The analysis of difference equations is expedited by reformulating equation 
(3) in terms of linear operators. Accordingly, we focus for the present on the 
linear space of sequences {ak}-,=() of complex numbers, and state 

Definition 1: The linear operator L, called the lag operator, is defined by the 
relation 

(4) UanVn=0 = {an + 1 } ^ = 0 . 

L has the effect of shifting the terms of a sequence by one position. 
Thus, it is often convenient to write 

Lan = an+l. 
Now (3) may be expressed in the form 

p(L){an} = 0 
where p(t) = tk + ok-\tk~l + • • • + CQ is called the characteristic polynomial 
of the equation. We follow the usual convention that the constant term of the 
polynomial p operates on the sequence {an} by scalar multiplication. Since 
p(L) is a linear operator, solving (3) amounts to determining the null space. 

Now we turn our attention to the application involving s*. As a first 
step, we use the operator approach to characterize polynomials in n as solu-
tions to a specific class of difference equations. The statement and proof of 
this result will be simplified by the following notation. 

Definition 2: D is the operator L - 1. Nk is the null space of Bk, Note that 
N]_ C N 2 ^ N3 ... . 

Theorem 1: For any k, Nfc consists of the sequences {an} such that an = p(n) 
for some polynomial p of degree less than k. 

Proof: We show first that polynomials of degree less than k are contained in 
Nfc. For k = 1, with an a polynomial of degree 0, and thus constant, it is 
clear that B{an} = 0. Proceeding by induction, assume that polynomials of 
degree less than k - 1 are in Nfe_ls and hence in Nfe. Showing that {nk~1} is in 
Nfc then assures that all polynomials of degree less than or equal to k - I die 

One application of D to {n ^} produces the sequence 

{(n + D^"1 - nk~1}. 
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This result is a polynomial of degree k - 2 and so is annihilated by D^"1, by 
the induction hypothesis. This shows that Bk{nk~1} = 0, and completes the 
first part of the proof. 

For the converse, we must show that the polynomials of degree less than k 
exhaust N^ . Since these polynomials comprise a subspace of dimension k9 it 
will suffice to show that N^ has dimension no more than k. This statement is 
clearly true for the case that k = 1. As before, the general case shall be 
established by induction. 

Assume that Nj has dimension j for all j less than k9 and suppose that an 
and bn are in Nfc but not in N^.^. Then I>k~1an and ~Dk~lbn are nonzero elements 
of N1? which is one dimensional. This implies that, for some scalar o9 

Bk~1an = cBk~lbn. 
Hence, an - obn lies in N^.j. We conclude that the dimension of N^ can exceed 
that of Nfc_]_ by at most 1. Finally, by the induction hypothesis, the dimension 
of N^ is no more than k, completing the proof. Q 

This result may be immediately applied to the analysis of s*. As observed 
previously, 

<+1 - si = (n + 1)' 
which is, in operator notation, 

Ds£ - (n + l)r. 

Now the right side is a polynomial in n of degree r9 so is annihilated by Dp+1. 
Thus, applying D p + 1 to both sides yields 

D"+2< = 0 

and hence, s^ is in Np+2- Moreover, 

which is not zero. It follows that 

sv
n e NP + 2\NP + 1, 

and that s£ is a polynomial in n of degree r + 1. 
The realization of s^ as a solution to the equation 

T)r + 2an = 0 

is more significant for our purposes than is the characterization of s% as a 
polynomial. For future reference, it is convenient to express this equation in 
the form 

(5) (L - iy + 2an = 0. 

We show next how matrix methods can be employed to solve difference equations. 
Then, as a particular example, we apply the method to (5) to derive (2). 

2. Matrix Methods for Difference Equations 

Matrices appear as the result of a standard device for transforming a kth-
order scalar equation into a linear vector equation. The transformation is 
perfectly analogous to one used in the analysis of differential equations ([1], 
p. 192), and was used in the form presented below in [7]. 

Suppose an satisfies a difference equation of order k, as in equation (3). 
For each n > 0, define the &>dimensional vector vn according to 
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2n+2 

^n + k-1 

The vector vn may be visualized as a window displaying k entries in the 
infinite column 

Now the transformation from vn to v^+1 can be formulated as multiplication 
by the k * k matrix C given by 

'k-1 

This matrix is the companion matrix for the characteristic polynomial of the 
original difference equation (3) . It can also be understood as a combination 
of row operations. In this view, C has the effect of rolling rows 2 through k 
up one position, and creating in place of row k the linear combination 

-£Q(row 1) - c,(row 2) ^^(row k) , 

These operations correspond exactly to the transformation from vn to v„+]_. 
Visually, multiplying vn by C has the effect of moving the window described 

earlier down one position. Algebraically, vn satisfies the vector difference 
equation 

(6) vn+l = Cvn. 
Evidently, a solution vn of (6) may be characterized by 

(7) Vn - C"V0, 

and so, the solution an of (3) is given as the first component of the right 
side of (7). These remarks may be summarized by expressing an in the equation 

(8) = [ 1 0 0 0] 

1 
0 

0 

k-1 lk-l 

This formula is not really useful as a functional representation of an 
because the powers of C must be computed by what is essentially a recursive 
procedure (although the computation can be made very efficient by exploiting 
the special structure of C, see [2]). However, if the roots of the character-
istic polynomial are known, the Jordan canonical form of C can be explicitly 
formulated as described in [7]. Thus, if the reduction of C to its Jordan form 
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J is expressed by C = SJS-1, then the matrix Cn may be replaced by SJnS-1 in 
(8). The special case in which the roots are distinct features a diagonal J 
and so the powers of J are simply expressed. This case is discussed in [5]. 
In the sequel, we shall focus on the application of matrix methods to the 
analysis of s£, based on equation (5). Observe that the characteristic poly-
nomial is given by (t - l ) r + 2 , hence, rather than distinct roots, we have a 
single root of multiplicity p + 2. The next section will discuss the proper-
ties of the Jordan form for this case, and derive equation (2). 

3. Analysis of s£ 

As observed in the preceding section, s% satisfies the difference equation 
(5) with the characteristic polynomial (t - l)r + 2-s and with k therefore equal 
to v + 2. Using this information, the general equation (8) may be particu-
larized to give 

(9) si - [1 0 0 ... 0] C 

C is the companion matrix for (t - l)p + 2. It can be shown that the Jordan 
canonical form for the companion matrix of a polynomial has one Jordan block 
for each distinct root. (A simple proof of this assertion may be constructed 
using Theorems 4.5 and 8.5 of [9].) In the present case, the Jordan form J is 
therefore a single Jordan block corresponding to the root 1. That is, J is a 
square matrix of dimension r + 2 with entries of 1 along the main diagonal and 
first superdiagonal, and all other entries zero. It will be convenient to 
write J = I I N , where I is the identity matrix. The matrix N is familiar as a 
nilpotent matrix whose j t h power has lfs on the j t h superdiagonal, and 0's 
elsewhere, for 0 < j <r + 1. Accordingly, Jn may be computed as 

(I + N)*=P£(^)NJ", 

and we observe that this result has constants along each diagonal. Specifi-
cally, it is an upper-triangular matrix with l's on the main diagonal, (JVs on 
the super diagonal, (2),s o n the next diagonal, and so on. 

The matrix S is also described in [7], and is given by 

V-.J 
This matrix is a special case of a more general form 

M >̂ = ((}: \y~%-

1 
1 1 
1 2 1 

,'i1) eh cj 
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In fact, M(X) plays the role of S when the characteristic polynomial is 
(t - A ) p + 2 , and the specific instance of S above is M(l). There are several 
interesting properties of M(X) described in [6]. Of special interest here is 
that 

M U r 1 = M(-A), 

and in particulars 

S"1 = M(-l). 

This shows that S_1 has the same form as S, but with a minus sign introduced 
before each entry of the odd numbered subdiagonals. Note that the square 
matrix which appears in (2) has exactly this form, but with one less row and 
column. Put another way, the matrix in (2) is the (p + 1)-dimensional 
principal submatrix of S"1* For future reference, we shall denote this matrix 
by S*. 

Combining the results presented so far, we have 

(10) 0 0 0]SJnS-1[s^ sf sl s^f. 50 °1 °2 °r+l-
This equation can be simplified by observing that premultiplication of a 

square matrix by the row [1 0 0 • • • 0] results in just the first row of the 
matrix. The first row of S is again [1 0 0 • • • 0] so that the product of the 
first three factors on the right side of (10) is simply the first row of Jn, or 

[(o) (?) <;)••• ( , : . ) ] • 
Therefore, we may write 

<"> °'«-[(o) (1) (V-Lli)]*-^ ^ 4 - < + 1 i T 

This is similar to (2), and is interesting in its own right. 
Next, to replace the initial terms of the sequence is2^} with initial terms 

of {nr}, we observe that 

(12) 

Dp+1 

1 
1 1 
1 1 1 

1 1 1 1 

0r 

(r + If 

When the right side of (12) is substituted in (11), the product S_1T appears, 
where T is the triangular matrix in (12). A straightforward computation 
reveals that S-1T may be expressed as the partitioned matrix 

1 

0 

0 

s* 
Thus, the combination of (11) and (12) results in the partitioned matrix equa-
tion 

»> • : - [ (S ) | ( ; ) ( ; ) - ( r i i ) ] 
1 

0 

0 

J 

[Oil2 . . . (p + l ) p f * 

Carrying out the partitioned multiplication completes the derivation of (2), 
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It is instructive to use (2) to derive a formula for s^ 
case. For example, with r == 2, we have 

in a particular 

(") (?) (") 
1 

-1 
1 

0 
1 

-2 

0 
0 
1 ( 1 ) + > G ) + <")• 

This gives s2- in terms of binomial coefficients, and simplification produces 
the well-known equation 

2 _ n(n + f){In + 1) 
Sn ~ 6 

The derivation of (2) generalizes immediately. Let p be a polynomial of 
degree r, and define sn = ££=0p(&)- All of the analysis through equation (13) 
remains valid when kv is replaced by p(k). This leads to the following analog 
of equation (13). 

0 "> < . - [ ( 5 ) | ( ? ) ( S ) - U . ) ] 
" 1 

_ 0 

0 

s* 
[p(0)|p(l) p(2) p(r + 1)] 

Carrying out the partitioned product now yields the identity 

(15) <.-'«»-[(?) (3 G)-(r I l)] 
1 
"I 1 
1 -2 

±1 I) *G) 1 

pd) 
p(2) 
P(3) 

p(r + 1) 

1 
1 
1 

0 
1 

-2 

0 1 
0 
1 J 

r i 2 
5 2 

92 

This equation may be used for adding up the first n terms of the sequence 
{p(k)} starting from k = 1 instead of k = 0. 

An interesting class of examples involves summing the pth powers of the 
first n integers equivalent to b modulo a. In these cases, the polynomial has 
the form p(k) = (ak + b)r . With a = 4 and 2? = -3, for example, the left-hand 
side of (15) is the sum of the first n terms of the progression lr, 5r, 9r, ... » 
For an even more specific example, let r = 2. Then (15) reduces to 

>'"'"'*-*"-»!-[(!)(;)G)] 
• ( ? ) + " ( 2 ) + " (5) . 

A review of the derivation of (2) and (15) reveals a natural division into 
two parts. In the first, culminating in equation (11), the analysis has gen-
eral validity. Any difference equation for which the Jordan canonical form can 
be calculated can be subjected to a similar analysis, resulting in an analo-
gous identity. The second part depends on the fact that the characteristic 
polynomial for the difference operator is a power of t - 1. Therefore, the 
final result (15) should not be expected to generalize in any obvious fashion 
to a larger class of difference equations. In the final section, another 
example is considered. As expected, a result analogous to (11) is obtained, 
but no analog for (2) appears. 
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4. Geometrically Weighted Power Sums 

In [3], recursive procedures are presented for expressing formulas for the 
geometrically weighted power sum 

<M = tkrxK 
k= 0 

This is a generalization of s% in the sense that s£(l) = s£. The sequence 
{sv

n(x)} (indexed by n) can be analyzed by matrix difference equation methods. 
As a first step, we have the following simple generalizations of earlier 
material. 

Definition 3: Dx is the operator L - x, where x acts as a scalar multiplier. 
N k O ) is the null space of D^. Note that Nx(x) C N2 (x) C N3 (x) . .. . 

Theorem 2: For any k, Nfe (x) consists of the sequences {an} defined as the 
termwise product of the exponential sequence xn with a polynomial in n of 
degree less than k. 

We omit a proof for this theorem; one can be obtained by modifying the 
proof of the earlier theorem in an obvious way. The main significance for the 
present discussion is as follows. Since 

Bs^(x) = {n + l)rxn + 1, 

it must be annihilated by ~D^ + 1° 
ence equation 

(L - x)r+l(L 

Therefore, s* (x) is a solution to the differ-

l)an 0. 

x) r+ 1 (t - 1), We rep-The characteristic polynomial for this equation is (t 
resent the reduction of its companion matrix to Jordan form in the usual way as 
C = SJS _1. Once again, the analysis of [7] is directly applicable. It tells 
us that J has one Jordan block of dimension r + 1 for the root x, and a 1 x 1 
block for the simple root 1. The matrix S is closely related to M(x) defined 
above. In fact, the first r + 1 columns of S are identical to the correspond-
ing columns of M(x) , but the final column consists of all l's. [Indeed, this 
final column is really the first column of M(l). In general, the matrix S is a 
combination of M(x)fs for the various roots of the characteristic polynomial, 
with the number of columns for each x given by its multiplicity as a root.] 
With these definitions for J and S, and with s£(x) in place of s^, we may 
calculate s^(x) using (11). 

Unfortunately, there is a bit more work required to determine an explicit 
representation for the inverse of S in this example. For simplicity, shorten 
M(x) to M, and define E to be the difference S - M. Thus, E is given by 

0 
0 

0 
0 

0 . 
0 . 

0 . 
0 . 

. 0 

. 0 

. 0 

. 0 

1 
1 

1 
0 

_ 
1 
1 

1 
0 

[0 0 0 1], 

Let the column and row matrices in this factorization be called Ec and Er, re-
spectively. Now we claim that 

s-1 = (i - s-^ivr1. 
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This can be verified by p r emu 1 tip lying by S. The product S_1E can be computed 
using the factorization of E as soon as S_1EC is determined. Thus, the problem 
of inverting S is reduced to finding the inverse image of a single vector. 
This is not surprising: since S was obtained by making a rank 1 modification to 
M, it is reasonable to expect a corresponding rank 1 modification to link the 
inverse matrices. 

Proceeding with this approach, S_1EC is computed by solving the equation Sv 
= Ec for v. Again using S = M + EcEr, write the equation as 

Mv + EcErv = Ec. 

Since Erv is a scalar, namely v9 the last entry of v, the equation may now be 
rearranged as 

Mv = (1 - v)Ec. 

This leads to 

v = (1 - v)M"1Ec, 

and by equating the final entries of the vectors on either side, to an equation 
for v. Once v is found, v simply requires the computation shown at the right 
side of the previous equation. Carrying out these steps produces 

(1 - x) r+l 

1 
1 - X 
(1 - x)1 

(i - xY 
(1 - x)r+1 - 1 

With this result, it is now possible to express S 1 as M l - vErM" Let 
-1 vw. w = ErM 1, which is simply the last row of M x. This gives S 1 = M 

At this point, the factors appearing at right in (11) cannot be simplified 
much further. As before, the first two factors yield the first row of S. How-
ever, this row has a 1 in the last position as well as the first, so multiply-
ing by Jn results in the sum of first and last rows of that matrix. Meanwhile, 
J is a block diagonal matrix. The first block is (r + 1)-dimensional and of 
the form xl + N. Its powers are computed just as before, exploiting the 
properties of N. Specifically, the first row of the nth power is 

[(SK (1>-1 - (>-'} 
and contributes all but the last entry of the first row of Jn. The second 
block is just the scalar 1 at the end of the diagonal. It contributes the only 
nonzero entry in the last row of Jn. When the first and last row are added, 
the result is 

[(!)*" (IK1 G> 
When all of the foregoing calculations and reductions are combined into a 

single equation, the result is 

(16) <(X) - [QXn (;)a»-l ... {^y-r ^-i 

s\{x) 
s\(x) 
s*(x) 

Lsr+1(*) 
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where 

-x 

-zrr^+1 

1 
-2x 

(-x) Ct')(->' (rV) i-xy 

(1 - x) F + l 

1 - x 

(1 : xV 
(1 - x)r+1 - 1 

[(-x)-l ( ' t 1 ) ^ ' (^ 1 ) ^ ^ 1 ••• *] 

This formulation is not as compact as (2) but is sufficiently orderly to 
permit convenient calculation for specific values of v and x. The following 
formulas were obtained by writing a short computer program to define and 
calculate the product of the last two matrices on the right side of (16), then 
running it with x set to 2 and v set to 1, 2, 3, 4, and 5. 

?*(2) = 2r tf) 
82(2) = 

8,3(2) = 

8^(2) -

s,5(2) = 

f 2 

+ 4( 

2 + 2 

-26 + I4(J) + 24(5)] + U 

1» - «(») + „£) + 24(») + 48 

-1082 + 542^) - 240(2) + 300^ + 250(^) + 240 «)] + 1082 
These equations are similar to the ones derived by Gauthier ([3], eqs. 31), but 
express s^(2) in terms of binomial coefficients instead of as polynomials in n. 

It is also feasible to use (16) symbolically for small values of r. As an 
example, we carry through the matrix multiplication for p = 2. 

The algebra will be simplified if the factors of (1 - x) appearing in the 
denominator of entries of S"1 are transferred to the corresponding entries of 
the first matrix factor* In pursuit of this goal, rewrite (16) in the form 

s*(x) = RS^C, 

where R and C are the row and column vectors, respectively, appearing in (16). 
Next, define the diagonal matrix D with entries 

(1 - x)~3, (1 - x)-

Then we may write (17) as 

2 (1 c) 1, and (1 - x)' 

sfW (RD)(D-1S"1)C. 

Focusing separately on each factor in (18), observe that 

RD = 

CT = 

n-l 
in\ x (n\ x'" in\^ 
V0/(1 -^r)3 U/(l - x)2 Wl 

n-l 1 

kx1 + x 
(1 - x)3-

9x3 + kx1 + x\ 

and 
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D-lS"1 
(1 - x)3 

-x{l - x)2 (1 - x)2 

x2(l - x) -2x(l - x) 1 - x 
-x3(l - x)3 3ic2(l - x)3 -3a?(1 - x)3 (1 - x)1 

l-x3 3xz -3x 1]. 
(1 - x)3 - 1 

Expressing the right side of this equation as a single matrix produces 

D-lS-1 

The entries in the first column have not been explicitly presented because they 
have no effect on the final formula for s2(x); these entries are each multi-
plied by the zero in the first position of C. Indeed, multiplying this last 
expression by C now yields 

* 
& 
* 
* 

~3x2 

-2x2 - 2x + 1 
~x2 - 2x 

3x2 

3x 
3x 

2x + 1 
-3x2 

-1 
-1 
-1 
1 

D^S^O 

-x(x + 1) 
x2{x - 3) 

-2x3 

x(x + 1) 

Finally, after multiplying by RD, the following formula is obtained: 

sHx) ptt + 1 -fa + 1) 
(1 - x)3 U/(l - x)2 V2/1 - x 

x^ + x 
(1 - x)3 

As before, this result is consistent with the analysis presented in [3]. 

5. Summary 

In this paper, matrix methods have been used to derive closed form expres-
sions for the solutions of difference equations. The general tool of analysis 
involves expressing a scalar difference equation of order k as a first-order 
vector equation, then using the Jordan canonical form to express powers of the 
system matrix, thus describing the solution to the equation. Two specific 
examples of the method have been presented, differing from previous work in 
that neither example features a diagonalizable system matrix. In the first 
example, an esthetically appealing formula for the sum X ^ = Q ^ P w a s derived. In 
the second example, the more general sum Hk=Qkrxk was analyzed. In each case, 
the results have been derived previously using other methods. However, the 
main point of the article has been to show that the methods of matrix algebra 
can be a powerful tool, and provide a distinct heuristic insight, for the study 
of difference equations. 
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