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Let M be a right angled triangle with legs x and y and hypotenuse z. Then 
x, y 9 and z satisfy x2 + y2 = z2

9 and conversely. If x, y, and z are natural 
numbers, then M is called a Pythagorean triangle and (x, y, z) a Pythagorean 
triple. If the natural numbers x9 y, and z further satisfy (x, y) = 1 or 
(y 3 z) = 1 or (z, x) = 1 (if one of these three holds, then all three hold), 
then M is called a -primitive Pythagorean triangle and (x, y3 z) a primitive 
Pythagorean triple. It is well known [4] that all primitive Pythagorean 
triangles or triples (x, y, z) are given, without duplication, by: 

(1) x = 2uv, y = u2 - v2, z = u2 + v2 or 

x = u2 - v2
 s y = 2uv, s = u2 + i?2, 

where u and V are relatively prime natural numbers of opposite parity and sat-
isfy u > V. Conversely, if u and V (u > v) are relatively prime natural num-
bers of opposite parity, then they generate a Pythagorean triangle according to 
(1) . Every primitive Pythagorean triangle (x, ys z) generates an infinite 
number of primitive Pythagorean triangles, namely (tx, ty, tz) where t is a 
natural number. Conversely, if (x, y, z) is a Pythagorean triangle, then (x/t9 
y/t, z/t) is a primitive Pythagorean triangle provided (xs y) = t . 

We see that the area of a primitive Pythagorean triangle 

(2uv, u2 - V2, u2 + V2), 

where u > V, (u, v) = 1, and u and V are of opposite parity is 

uv(u2 - v2). 

Conversely, a natural number n of the form uv(u2 - V2) with u > V, (us v) = 1, 
and u and V of opposite parity is the area of the primitive Pythagorean 
triangle (2uv, u2 - V2, u2 + V2). 

Definition 1: The area of a Pythagorean triangle is called a Pythagorean number 
and that of a primitive Pythagorean triangle a primitive Pythagorean number. 

From the discussion above, it is clear that if n is a Pythagorean number 
then t2n is also a Pythagorean number for every natural number t . But, if t2n 
is a Pythagorean number, it does not imply that n is a Pythagorean number. For 
example, 84 = 22 • 21 is a Pythagorean number but we shall see shortly that 21 
is not. 

The following is a list of Pythagorean numbers below 10,000. There are 150 
in all, out of which 43 are primitive. The primitive ones are underlined. 
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6, 24, 30, 54, 60, 84, 96, 120, 150, .[80, 210, 216, 240, 270, 294, 330, 

336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 

924, 960, ̂ 90, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 

1536, 1560, 1620, 1710, 1716, 1734, 1890, 1920, 1944, 2016, 2100, 2160, 

2166, 2184, 2310, 2340, 2400, 2430, 2520, 2574, 2646, 2730, 2880, 2904, 

2940, 2970, 3000, 3024, 3036, 3174, 3360, 3456, 3570, 3630, 3696, 3750, 

3840, 3900, 3960, 4056, 4080, 4116, 4290, 4320, 4374, 4500, 4536, 4620, 

4704, 4860, 4896, 4914, 5016, 5046, 5070, 5250, 5280, 5376, 5400, 5544, 

5610, 5670, 5766, 5814, 5880, 6000, 6090, 6144, 6240, 6480, 6534, 6630, 

6750, 6804, 6840, 6864, 6936, 7140, 7260, 7350, 7440, 7560, 7680, 7776, 

7854, 7956, 7980, 8064, 8214, 8250, 8316, 8400, 8640, 8664, 8670, 8736, 

8820, 8910, 8970, 8976, 9126, 9240, 9360, 9600, 9690, 9720 

If P'P^ and P^ stand, respectively for the number of primitive Pythagorean 
numbers and number of Pythagorean numbers in the ith thousand, then we have: 

(P-P<> ^:) (13, 34), (6, 19), (34, 17), (3, 13), (4, 13), 

(3, 13), (2, 12), (5, 10), (2, 13), and (1, 6) 

for i = 1, 2, 10 in order. 

This shows that the distribution of Pythagorean numbers is very irregular. 
From the above table, we see that 

(i) every Pythagorean number is divisible by 6. 

(ii) the unitfs place of a Pythagorean number is 0, 4, or 6. 

(iii) out of the first 150 Pythagorean numbers there are 86 with 0, 31 
with 4, and 33 with 6 in their unit's places. Thus, there are more 
Pythagorean numbers with 0 in their unit's places than with 4 or 6. 
Pythagorean numbers with 4 or 6 in their unit's places occur almost 
the same number of times when we consider all Pythagorean numbers up 
to a given integer. 

We shall see that (i), (ii), and (iii) are facts not accidents. 
We can construct as many primitive Pythagorean or Pythagorean numbers as we 

like. But given a Pythagorean number, we cannot tell or construct the next 
Pythagorean number. We shall give some necessary and sufficient conditions for 
an integer n to be Pythagorean or primitive Pythagorean, but they are not very 
useful for practical purposes when n is very large. 

Theorem 1: A natural number n is Pythagorean if and only if it has at least 
four different positive factors a, b, c, and d such that 

ab = od = n and a + b = c d. 

Proof: Let n be a Pythagorean number. Then 

n = m^uviu2- - v2-) 
where u and v {u > v) are of different parity with (u, v) = 1. Clearly, n has 
four different factors, 

a = mv(u + v), b = mu(u - v), o = mu{u + v), and d = mv(u - v), 
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and they satisfy ab = cd = n and a + b = m(u2 + V2) = c - d. Conversely, let n 
be a natural number with four different positive factors a* b 9 cs and d such 
that ab = cd = n and a + b = c - d. From ab = cd and a + b = c - d, we elimi-
nate d and get 

c2 - a(a + b) - ab = 0. 

Since the discriminant (a + b)2 + kab > (a + b)2 and c is a positive integer, 
we take 

c = |{a + Z? + /(a + b)2 + 4aM. 

For c to be an integer, we must have 

(a + b)2 + 4aZ? = t2 

where £ is a positive integer. The necessary condition is also sufficient. 
Now 

(a + b)2 + 4aZ> = t2 or 2(a + b)2 = £2 + (a - Z?)2 

can be rewritten as 

4(a + Z>)2 = (t + a - b)2 + (t - a + b)2. 

Clearly, t + a - b and t - a + b are both even integers. Therefore, 
ft + a - M 2 /£ - a + 2>\2 7x9 i t + a - b\z it - a + £ y i 

(a + 2»2 = ( ) + ( ~ ) 
I f 

ft + a - b t - a + b\ 
= 777 (-' 2 2 > 

t h e n 7?? d i v i d e s a + b. H e n c e , 

+ b\2 _ It + a - fc\2 / £ - a + 2?\2 
777 / ~ V 2777 / ^ 2777 

Now 

la + /3\2 _ /t + a - b\2 It - a + M 2 
V 777 / ~ V 2777 / + ^ 2m / 

It + a - b t - a + b a + b\ 
V 2777 2777 777 / 

is a primitive Pythagorean triple. Taking 

t + a - Z ? £ - a + 2? 9 9 a + Z? 9 9 = 2uv, = u z - TJ>Z, and = uA + V z
s 

2/77 2777 777 

w h e r e u > V9 (u, v) = 1 , and u and i? a r e of o p p o s i t e p a r i t y , we g e t 

a = m(v2 + uv) 9 b = 7T7(W2 - w v ) , 

c = m(u2 + u v ) , d = m(uv - v2). 

I f we t a k e 

t + a - b 0 r, t - a + b , a + b 9 9 = u z - V , = 2uv, and = wz + V z , 
2777 2777 777 

t h e n 

a = 777(u2 - UV) , Z? = 7??(V2 + WV), 

<? = m(u2 + uv), <i = 7?7(wv - v 2 ) , 
then 

n = ab = m2uv(u2 - v 2 ) , 
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which i s the a r e a of the Pythagorean t r i a n g l e 
(2muv, m{u2 - v2), m{u2 + v2)). 

Hence, n i s a Pythagorean number. We no te t h a t 

a + Z? = c - d = /??02 + v2) 

is the hypotenuse of the Pythagorean triangle with area n. 
Bert Miller [6] defines a nasty number n as a positive integer n with at 

least four different factors a, Z?, c, and d such that 
a + b - c - d and ab = ad = n. 

By Theorem 1, n is nasty if and only if it is Pythagorean. "Pythagorean num-
ber" is a better name for "nasty number." 

Theorem 2: If four positive integers P, s, t , and are such that p, s, and t 
are in arithmetic progression with 777 as their common difference, then n = rstm 
is a Pythagorean number. If s and m are relatively prime and of opposite 
parity, then n is a primitive Pythagorean number. 

Proof: As p, s, and t are in arithmetic progression with 777 as their common dif-
ference, 

n = rstm = v{v + 777) (r + 2m)m. 

Taking 

a = P(P + 777), & = O + 2777)777, C = (P + 777) (P + 2777), d = P777, 

we have four different positive integers a, 2?, c, and d such that 

ab = cd = n and a + Z? = P 2 + 2P77? + 2T772 = c - d. 

Therefore, by Theorem 1, n = PŜ TT? is a Pythagorean number. If s and 777, i.e., 
p + 7?? and 777 are relatively prime and of different parity, we take p + 777 = u, 
m = v and get 

n = uv(u2 - v2) 
where (u, v) = 1, u > V, and u and v are of different parity. Hence, n is a 
primitive Pythagorean number. 

Corollary 2.1: The product of three consecutive integers n, (n + 1), (n + 2) is 
a Pythagorean number. It is primitive only if n is odd. 

Proof: Since n(n + I)(n + 2) = n(n + l)(n + 2) • 1 is the product of three inte-
gers n, n + 1, n + 2 that are in arithmetic progression with common difference 
1, n(n + l)(n + 2) is a Pythagorean number. The triangle is 

{In + 2, n2 + 2n9 n2 + 2n + 2). 

The numbers w + 1 and 1 are always relatively prime. They will be of dif-
ferent parity if and only if n is odd. Hence, n{n + 1) {n + 2) is a primitive 
Pythagorean number if and only if n is odd. 

n 
Corollary 2.2: The number 6^T,k2 i s a primitive Pythagorean number. 

k= 1 
Proof: The number 

n 

6 Yl k = n(n + l)(2n + 1). 
fc* 1 

34 [Feb. 



PYTHAGOREAN NUMBERS 

Since {n + 1) and n aire r e l a t i v e l y prime and of o p p o s i t e p a r i t y 

1 • (n + 1) (2w + 1) * n 

i s a p r i m i t i v e Pythagorean number, by Theorem 2. 

Corollary 2.3: F2n
F2n + 2F2n + ̂  i s a P y t n a g ° r e a n number where Fn i s t he nth F i b o -

n a c c i number. I t i s p r i m i t i v e i f and only i f F2 + 2 i s even. 

Proof: The F ibonacc i numbers a r e def ined by 

F, = 1, F2 = 1, Fn+l =Fn +Fn_lt n > 2 . 
I t i s w e l l known t h a t 

F0 F0 4-i, = (^9 4 - 9 ) 2 - 1 = (F0 + 9 + D ( ^ 0 4-9 ~ D -
2n zn+H v 2n + 2 7 v 2n + 2 ' v 2n + 2 y 

The re fo r e , 
F2nF2n + 2F2n + k = ^ 2 n + 2 " 1 ^ 2 n + 2 ^ 2 n + 2 + ^ 

= product of three consecutive integers. 

Hence, by Corollary 2.1, it is a Pythagorean number. It is primitive if and 
only if Fr, +2 ~ 1 i-s odd, i.e.,

 F2n + 2 ^s even-

Corollary 2.4: The product of three consecutive Fibonacci numbers F2n>
 F2n+l9 

and F2n + 2 ^s a Pytn ago r e a n number. It is primitive if and only if F2n + l ^s 

even. 

Proof: UseF2„ + 2.F 2 n = (F2n + 1)2 - 1. 

Corollary 2.5: The product of four consecutive Fibonacci numbers Fn, F
n+i» 

F
n + 2> and F + o is a Pythagorean number. It is primitive if and only if F +, 
and F +2 a r e °f different parity. 

Proof: We have 

^ ^ + 1 ^ + 2^+3 = (Fn + 2 " ^ w - l ^ n + 2 ^ + 2 + ^n+l^n+1' 
Since 

^ + 2 -
 Fn+l> Fn + 2> a n d Fn + 2 + ^+l 

are in arithmetic progression with common difference F
n+i> by Theorem 2 

n n + 1 rc + 2 n+ 3 
is a Pythagorean number. Since 

(Fn+1> Fn + 2^ = l j 

^ 2 ^ + 1 ^ + 2^+3 ± S P r i m i t i v e i f a n d o n l y i f F
n+I a n d r̂c + 2 a r e ° f d i f f e r e n t 

parity. 

Corollary 2.6: The product of four consecutive Lucas numbers Ln, Ln + i» ^n + 29 

L + 3 is a Pythagorean number. It is primitive if and only if -^n+1s ^n+2 a r e ° ^ 
opposite parity. 

Proof: The Lucas sequence is defined by 

LQ = 2, Ll = 1, Ln+l = Ln +^,_1, n > 1. 
Since 

LnLn + lLn + ZLn + 3 = ( L n + 2 " ~ L n + l ) L n + 2 ( L n + 2 + L n + P * Ln + l> 
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i t i s a Pythagorean number, by Theorem 2. Since 

( L n + l ' Ln+2) = 1 ? 

it is primitive if and only if L +, and L 2
 a r e °f different parity. 

We have already seen that there are infinitely many Pythagorean and primi-
tive Pythagorean numbers which are products of three consecutive integers. 
Since 

x{x + l)(x + 2)(x + 3) 

is always Pythagorean if either x or x + 3 is a square, we have an infinite 
number of Pythagorean numbers which are products of four consecutive integers. 
Now a natural question is: 

Do we have infinitely many Pythagorean and primitive Pythagorean 
numbers which are -products of two consecutive integers'7. 

The following theorems give affirmative answers to our question. 

Theorem 3: There are infinitely many Pythagorean numbers which are products of 
two consecutive integers. 

Proof: Let 

n = a2(a2 - l)a2(a2 + 1), a > 1. 

Since (a2 - l)a2(a2 + 1 ) is a product of three consecutive integers, it is a 
Pythagorean number, by Corollary 2.1. The product of a Pythagorean number and 
a square number is always Pythagorean. Thus, 

n = a2{a2 - l)a2(a2 + 1) 

is Pythagorean. Since n = a^(a^ - 1), it is a product of two consecutive inte-
gers. 

Again, let 

n - fl2(?ijLl)(^JLi)(a2 _ 2) 

where a is an odd natural number > 1. Since 1, (a2 - l)/2, a2 ~ 2 form an 
arithmetic progression with common difference (a2 - 3)/2 and a is odd, 

(a2 - 3\/a2 - 1\, o 

is Pythagorean, whence, 

3\/an ,2 

is Pythagorean. But 
/a1* - 3a2\/a^ - 3a2 \ 

n - \~T-)(—l— + ') 
is a product of two consecutive integers. 

Theorem 4: There are infinitely many primitive Pythagorean numbers which are 
products of two consecutive integers. 

Proof: Consider the product number FnFn+ lFn + 2Fn+ 3 where Fn is the nth Fibonacci 
number and Fn+l, Fn+2 are of opposite parity. By Corollary 2.5, FnFn+lFn+2Fn+3 
is a primitive Pythagorean number. Since FnFn+3 = Fn+lFn+2 + (-l)n, 
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FnFn+lFn + ZFn + 3 ~ Fn+lFn+2^Fn + lFn+2 + ^ ^ ) 

is a product of two consecutive integers. 

Although there are infinitely many Pythagorean numbers which are products 
of (a) three consecutive integers, (b) two consecutive integers, there are only 
two Pythagorean numbers 6 and 210 which are simultaneously products of two as 
well as three consecutive integers [7]. 

Theorem 5: Every Pythagorean number is divisible by 6. 

Proof: Every Pythagorean number n is of the form m2uv(u2 - V2) where u > V, (u, 
V) = 1 and u and V are of opposite parity. Since u and v are of opposite 
parity, n is already divisible by 2. We show that n E 0 (mod 3). Since, by 
Fermatfs little theorem u^ E u (mod 3) and f3 E v (mod 3), 

n = m2uv(u2 - V2) = m2(u^v - uv^) E m2(uv - uv) = 0 (mod 3). 

Corollary 5.1: No Pythagorean number except 6 is perfect. 

Proof: By Theorem 5 every Pythagorean number n is divisible by 6. So 

n E 0, 3, or 6 (mod 9). 

As every Pythagorean number is even, no odd perfect number (the existence or 
nonexistence of which is an open problem) can be a Pythagorean number. The 
number 2n-1(2n - 1) when n and 2n - 1 are primes is an even perfect number and 
every even perfect number is of this form [4] . It is an easy exercise to see 
that every even perfect number except 6 is congruent to 1 (mod 9). Therefore, 
no even perfect number > 6 can be Pythagorean. Thus, 6 is the only number that 
is both Pythagorean and perfect. 

By Bertrand!s postulate [4] there is a prime number between n and In for 
every integer n > 1. The following theorem shows that we can have a similar 
result for Pythagorean numbers. 

Theorem 6: For every integer n > 12 there is a Pythagorean number between n 
and 2n. 

Proof: The number 24 does the job for 13 < n < 23, 30 does the job for 24 < n < 
29, and 54 does the job for 30 < n < 53. We see that 

6(t + l) 2 < 12t2 for t > 3. 

Therefore, the Pythagorean number 6(t + I)2 lies between 6t2 and 12t2 . Thus, 
6(t + l) 2 does the job for 

6t2 < n < 6(t + I) 2 - 1 for t > 3. 
Since 6t2 is Pythagorean for every positive integer t , there is a Pythagorean 
number between n and In for every n > 12. 

We know that if n is Pythagorean then t2n is Pythagorean for every natural 
number t. If n and tn are both Pythagorean, then it follows easily that t n is 
Pythagorean for every positive integral exponent 77? . Thus, 5m * 6, 2m * 30, 
lm • 30 are Pythagorean for every positive integral exponent 7?7. Hence, there 
are an infinite number of Pythagorean numbers of the form 10/C* If t = 10s + 2 
or 10s + 3, then 6t2 = 4 (mod 10). Since 6t2 is Pythagorean for every positive 
integer t, we have an infinite number of Pythagorean numbers of the form 
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10k + 4. Similarly, for t = 10s + 4 and t = 10s + 6, we have 6t2 E 6 (mod 10), 
whence there are an infinite number of Pythagorean numbers of the form 10k + 6. 
Thus, we have 

Theorem 7: There are infinitely many Pythagorean numbers of the form (i) 10k 9 
(ii) 10k + 4, and (iii) 10k + 6. 

The next theorem shows that every Pythagorean number is of the form 10k, 
10k + 4, or 10k + 6. 

Theorem 8: No Pythagorean number can have 2 or 8 in its unit's place. 

Proof: As every Pythagorean number is divisible by 6, it can have 0, 2, 4, 6, 
or 8 in its unit's place. We shall show that it can have only 0S 4, or 6 in 
its unit's place. Every Pythagorean number is of the form t2uv(u2 - V2) where 
t9 u, and v are natural numbers with (u, v) = 1, u > V, and u and v are of 
opposite parity. It is an easy exercise that number n is the area of the 
Pythagorean triangle 

(2tuv, t(u2 - v2), tin2 + v2)). 
A Pythagorean triangle has one of its sides divisible by 5. If one of the legs 
or t is divisible by 5, then n is divisible by 10 and, hence, has 0 in its 
unit's place. Now suppose that neither t nor one of the legs is divisible by 
5. Then u t 0 (mod 5) , V 1 0 (mod 5), and u2 - V2 £ 0 (mod 5), but then u2 + 
V2 E 0 (mod 5). As u2 + V2 is odd, we have u2 + V2 = 5 (mod 10). Now, con-
sidering modulo 10, we have 

(u, v) E (1, 2), (1, 8), (2, 1), (2, 9), (3, 4), (3, 6), (4, 3), 
(4, 7), (6, 3), (7, 4), (7, 60, (8, 1), (8, 9), (9, 2), 
and (9, 8). 

For every (u, v) written above, uv(u2 - V2) = 4 or 6 (mod 10). If t i 0 (mod 
5), then t2 E 1, 4, 6, 9 (mod 10) and t2uv{u2 - V2) can have only 4 or 6 in its 
unit's place. Thus, every Pythagorean number can have 0, 4, or 6 in its unit's 
place. 

Corollary 8.1: No four Pythagorean numbers can form an arithmetic progression 
with common difference 6 or 24. 

Proof: We shall prove the corollary for the common difference 6. The proof for 
the common difference 24 is analogous. We show that n, n + 6, n + 12, and n + 
18 cannot be simultaneously Pythagorean. The number n being Pythagorean, it 
must have 0, 4, or 6 in its unit's place (Theorem 8). If n has 0 in its unit's 
place, then n + 12 will have 2 in its unit's place. So n + 12 cannot be 
Pythagorean. If n has 4 in its unit's place, then n + 18 cannot be Pythago-
rean. If n has 4 in its unit's place, then n + 18 cannot be Pythagorean by the 
same argument. If n has 6 in its unit's place, then n + 6 will have 2 in its 
unit's place. So n + 6 cannot be Pythagorean. Therefore, n, n + 6, n + 12, 
and n + 18 cannot be simultaneously Pythagorean. 

Arguing as above, we have 

Corollary 8.2: No three Pythagorean numbers can form an arithmetic progression 
with common difference 12 or 18. 

It is clear that for any a.p. series of Pythagorean numbers with common 
difference d and of length L we have an a.p. series of Pythagorean numbers of 
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length at least L with common difference dt2, t an integer. 

Conjecture 1: The numbers n, n + 6, and n + 12 cannot be simultaneously 
Pythagorean. 

Conjecture 2: The numbers ns n + 24, and n + 48 are simultaneously Pythagorean 
if and only if n = 6. 

We note that if Conjecture 2 is true then Conjecture 1 is true. Suppose n9 
n + 6, and n + 12 are simultaneously Pythagorean, then 4n, 4n + 24, and kn + 48 
are Pythagorean. If Conjecture 2 is true, then kn = 6 , which is nonsense. So 
Conjecture 1 is true. We see from our list of Pythagorean numbers that 120, 
150, 180, 210, 240, 270 form an a.p. series with common difference 30. It has 
length 6. From this a.p. series, we can construct an a.p. series of length at 
least 6 with common difference 30t2 , t a positive integer. For example, 480, 
840, 960, 2080 is an a.p. series with common difference 120. 

Problem 1: What can be the maximum length of an a.p. series all of whose terms 
are Pythagorean numbers? 

If two Pythagorean numbers are 6 apart, then we call them twin Pythagorean 
numbers like twin primes. For example, twin Pythagorean numbers below 10,000 
are: 

(24, 30), (54, 60), (210, 216), (330, 336), (480, 486), (540, 546), 
(720, 726), (750, 756), (1710, 1716), (2160, 2166), (8664, 8670), 
(8970, 8976). 

Although we do not know whether the number of twin primes is finite or infinite 
we do have a definite answer for the twin Pythagorean numbers. 

Theorem 9: The number of twin Pythagoreans is infinite. 

Proof: Since 6 and 30 are Pythagorean numbers, 6x2 and 30y2 are Pythagorean for 
all integral values of x and y, 6X2- and 30z/2 are twin if 

6x2 - 30z/2 = ±6 or x2 - 5y2 = ±1 . 
The pellian equation x2 - by2 = -1 has fundamental solution 

ul + v l ^ = 2 + /5. 

All solutions of x2 - 5y2 = -1 are given by 

(2 + /5) 2 l = u2 1 + vz 1/5. 

Again, all solutions of x2 - 5y2 = 1 are given by 

(2 + /5) 2 = uz + v2 i/5. 

We have the recurrence relation 

u. n + 2 = 4 w n + l + Un> Vn+2 = kVn+\ + Vn w i t h 

2, Vn = 1. Ul = ^ 5 V1 = ^ 5 u2 ~ ^' u2 

The first few solutions for x2 - 5y2= ±1 are (1, 0), (2, 1), (9, 4), (38, 17), 
(161, 72) etc. They give us, respectively, twin Pythagorean numbers (6, 0) , 
(24, 30), (486, 480), (8664, 8670), (155526, 155520). 

Since we have an infinite number of solutions for each of the equations 

x2 - 5y2 = -1 and x2 - 5y2 = 1, 
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we have an infinite number of twin Pythagorean numbers. For Pellfs equation, 
one can refer to [8]. 

Since 6 and 60 are Pythagorean, 6x2 and 60y2 will be twin Pythagorean if 

6x2 - 60y2 = ±6 or x2 - I0y2 = ±1. 

All solutions of x2 - I0y2 = ±1 are given by 

un + /I(h;n = (3 + /T0) n; 

n is even for x2 - I0y2 = 1 and odd for x2 - I0y2 = -1. The solutions satisfy 
the recurrence relation 

Un + 2 = 6un + l + Un a n d Vn + 2 = K + l + Vn w i t h 

ui = ^9 vi = 0» ^2 = 3, t>2 = 1. 

The first solutions are: (1, 0), (3, 1), (19, 6), (117, 37). They give us, re-
spectively, (6, 0), (54, 60), (2166, 2160), (82134, 82140). We again have an 
infinite number of Pythagorean twins from the solutions of the equations 
6x2 - 60y2 = ±6. 

Definition 2: A Pythagorean number n is called independent if it cannot be ob-
tained from another Pythagorean number m by multiplying it by t2, where £ is a 
natural number. For example, 6 is independent, while 24 is not. 

It follows from Theorem 1 that for an integer to be an independent Pythago-
rean number, it is necessary that it should be primitive. The following 
example shows that the necessary condition is not sufficient, and hence C. K. 
Brown1s statement [2] is incorrect. 

Consider the number 840. It is primitive because it is the area of a 
primitive triangle (112, 15, 113). It is also four times the area of another 
primitive triangle (20, 21, 29). Hence, 840 is primitive but not independent. 

Theorem 10: There are an infinite number of primitive Pythagorean numbers 
which are not independent. 

Proof: Consider the number n given by 

n = (18k2 + Ilk + 2)(6^2 + Mi + l)(24k2 + 16k 4- 3) (12k2 + 8k + 1), 

where k > I. Let 

u = 18k2 + 12k + 2 and v = 6k2 + 4k + 1. 

Now u is even, v is odd, and (u, v) = 1 with u > V. So n = uv(u + v)(u - v) is 
the area of a primitive Pythagorean triangle, and hence n is a primitive 
Pythagorean number. Again n can be written as 

n = (3k + l)2(12k2 + 8k + 2)(24k2 + 16k + 3)(12k2 + 8k + 1) 

= (3k + l)2n', 

where n' is of the form a(a + I)(2a + 1) where a = 12k2 + 8k + 1. So n! is 
primitive Pythagorean by Corollary 2.2. If k > 1, n is not independent. 

We give two more examples for the above fact. 

Example 1: 

n = (18k2 + 24k + 8)(6k2 + 8k + 3)(24k2 + 32k + 11)(12k2 + 16k + 5), k > 1, 

= (3k + 2)2(12k2 + 16k + 6)(24k2 + 32k + 11)(12k2 + 16k + 5) 
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Example 2: 

n = (6k + 2)(2k + I)(8k + 3) (4fc + 1) with k > 1 and 3k + 1 = s2, 

= (3fc + l)(4fc + 2)(8k + 3) (4k + 1). 

Problem 2: Find a sufficient condition for an integer n to be an independent 
Pythagorean number. 

Definition 3: A natural number n is called a twice (thrice) Pythagorean number 
if it can be the area of two (three) different Pythagorean triangles. 

Since by Theorem 10 we have infinitely many primitive Pythagorean numbers 
which are not independent we have an infinite number of twice Pythagorean num-
bers . The number n = 840 is a thrice Pythagorean number because n is the area 
of three Pythagorean triangles (40, 42s 58), (70, 24, 74), and (112, 15, 113). 
Hence, 840t2 is triply Pythagorean for every natural number t . 

Some positive integers are twice primitive Pythagorean. There are three 
such numbers below 10,000. They are 210, 2730, and 7980. For example, (i) 
n = 210 is the area of two primitive Pythagorean triangles (12, 35, 37) and 
(20, 21, 29), (ii) n = 2730 is the area of two primitive Pythagorean triangles 
(28, 195, 197) and (60, 91, 109), and (iii) n = 7980 is the area of two primi-
tive Pythagorean triangles (40, 399, 401) and (168, 95, 193). 

To find all positive integers n which can be the area of two primitive 
Pythagorean triangles is an interesting problem which, to the best of our 
knowledge, has escaped the notice of mathematicians so far. 

Problem 3 

Problem 4 

Problem 5 

Find all positive integers n which are twice primitive Pythagorean. 

Is there an integer n which is thrice primitive Pythagorean? 

Let m be the maximum number of Pythagorean triangles having the 
same area. Can we say something about 772? 

Definition 4: A powerful number [3] is a positive integer n satisfying the prop-
erty that p2 divides n whenever the prime p divides n, i.e., in the canonical 
prime decomposition of n, no prime appears with exponent 1. 

Definition 5: A number is powerful Pythagorean if it is powerful and Pythagorean. 

Theorem 11: A Pythagorean number is never a square. 

Proof: If possible, let m2uv(u2 - V2-) = s2 where (u9 v) = 1, u > V, and u and v 
are of opposite parity. Then 

S2 
UV(U - V) (U + V) = —~ = S f2 

mA 

yields 
u = a2, v = b2, u - v = c2

9 and u + v = d2
9 

where a, b9 c, and d are natural numbers. Now we have 

a 2 _ h2 b2 = c2 and a2 + b2 = d2, 

which is impossible [4]. if (u, v) = 1 and uv(u - v)(u + v) = sk, then there 
exist natural numbers a, b9 c, and d such that 

u = ak, v = bk, u - v = ck> and u + v = dk, 
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whence eft + b^ = d^. A primitive Pythagorean number is never a kth power of an 
integer if Fermat's last theorem is true for the exponent k (i.e., x^ + yk = z^ 
has no nontrivial solution)„ 

Theorem 12: There are infinitely many powerful Pythagorean numbers. 

Proof: If n is Pythagorean, then t2n2m+^ ±s powerful Pythagorean for every pos-
itive integer t and m. 

The smallest powerful Pythagorean number is 63 = 216. Some other powerful 
Pythagorean numbers are t2 • 63, t2 • 2m • 303, t2 • 5m • 63, t2 • lm > 303. 

Theorem 13: There is no Pythagorean number in the Lucas sequence. 

Proof: A Pythagorean number is divisible by 6 and has 0, 4, or 6 in its unit's 
place. For the nth Lucas number to be Pythagorean, it is necessary that Ln = 0 
(mod 6) and Ln E 0, 4, or 6 (mod 10). We consider the Lucas sequence modulo 6 
and modulo 10 separately. 

Modulo 6 the Lucas sequence is 

<2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5>2,1,3,... . 

Its period is 24. We have 

L2^k+6 E °  (mod 6^ a n d L2^k+18 ~ °  (mod 6^' 
Modulo 10 the Lucas sequence is 

<2,1,3,4,7,1,8,9,7,6,3,9>2,1,... . 

Its period is 12 and 

L2kk + 6 = L12fc'+6 ~ 8 ( m ° d 10)' 
L 2 ^ + 18 = L12(2k + l)+6 E 8 ( m o d 10)' 

The Lucas numbers that are divisible by 6 have 8 in their unites place; there-
fore, they cannot be Pythagorean. 

Conjecture 4: There is no Pythagorean number in the Fibonacci sequence. 

We shall discuss the problems and conjectures in this paper and other 
interesting questions on Pythagorean numbers in a future paper. 
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