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BASIC FORMULAS 

The F ibonacc i numbers Fn and the Lucas numbers Ln, s a t i s f y 
Fn + 2 = Fn+l + Fn> F0 = °» Fl = l* 
Ln+Z = Fn+l + Ln> LQ = 2 , Ll = 1 . 

Also , a = (1 + / 5 ) / 2 , 3 = (1 - / 5 ) / 2 , Fn = (an - 3 n ) / / 5 , and Ln = an + $n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-670 Proposed by Russell Euler, Northwest Missouri State U., Marysville, MO 

^ nFn Evalua te 22 —~-
n=\ 2 

B-671 Proposed by Herta T. Freitag, Roanoke, VA 

Show that all even perfect numbers are hexagonal and hence are all trian-
gular. [A perfect number is a positive integer which is the sum of its proper 
positive integral divisors. The hexagonal numbers are {1, 6, 15, 28, 45, . ..} 
and the triangular numbers are {1, 3, 6, 10, 15,...}. ] 

B-672 Proposed by Philip L. Mana, Albuquerque, NM 

Let S consist of all positive integers n such that n = lOp and n + 1 = 11^, 
with p and q primes. What is the largest positive integer d such that every n 
in S is a term in an arithmetic progression a, a + d, a + 2d, ...? 

B-673 Proposed by Paul S. Bruckman, Edmonds, WA 

Evaluate the infinite product ][ 
n = 2 

B-674 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Define the sequence {un} by 

UQ = 0, u\ = 1, un = gun-i - un-2* for n i n {2, 3 , . . . } , 
where g i s a roo t of x1 - x - 1 = 0 . Compute un for n i n {2, 3 , 4 , 5} and then 
deduce t h a t (1 + / 5 ) / 2 = 2 COS(TT/5) and (1 - / 5 ) / 2 = 2 C O S ( 3 T T / 5 ) . 
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B-675 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

In a manner analogous t o t h a t for the p rev ious problem, show t h a t 

fa + fa = 2 cos £ and fa - fa = 2 cos ^ -o o 

SOLUTIONS 

Not T r u e Asymptot ica l ly 

B-645 Proposed by R. Tosic, U. of Novi Sad, Yugoslavia 

1 ^ r (2m - 1\ r)(2m - 1\ , / 2TT? \ . i o o 
L e t £ 9 m = - 2 o + c f o r w = 1 , 2 , 3 , . . . , 

^ • . - D - M •*(„*,) ««-•». ..2 
where (£) = 0 for k < 0. Prove or d i sp rove t h a t £n = Fn for n = 0, 1, 2 , . 

Solution hy Y. //. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Let us s tudy the asympto t ic growth of Gn. I t i s ev iden t t h a t 

(2;> 
H e n c e , (2m 

G2m + l \m J (2m)I ml (m - 1 ) ! 

and 

G2m /2m - 1\ mlml (2m - 1)1 
\ m / 

(2m + 1\ 
G2m+z U + 1 / _ (2m + 1) ! mlml _ 2m + 1 

^ m + l /2 /77\ ~ O + l)!/7z! " (2m) ! m + 1 
2 , 

\ 777 / 

so t h a t Gn/Gn-i ~ 2 . However, i t i s w e l l known t h a t 

Thus, Gn * Fn for s u f f i c i e n t l y l a r g e n. In f a c t , from numer ica l computa t ions , 
we have Gn = Fn for 0 < n < 14, and £n > Fn for rc > 15. 

AZso solved by Charles Ashbacher, Paul S. Bruckman, James E. Desmond, 
Piero Filipponi, L. Kuipers, and the proposer. 

T r i a n g u l a r Number Analogue 

B-646 Proposed by A. P. Hillman in memory of Gloria C. Padilla 

We know t h a t F2n = FnLn = Fn(Fn_l + Fn + l) . Find m as a func t ion of n so as 
to have the analogous formula Tm = Tn(Tn.l + Tn+1), where Tn i s the t r i a n g u l a r 
number n(n + l ) / 2 . 

Solution by H.-J. Seiffert, Berlin, Germany 

We have: ^ ( T n _ x + Tn+l) = Tn(Tn -n + Tn+n+l)= Tn(2Tn + 1) 

= n(n + l)(n(n + 1) + l ) / 2 = ^ ( n + i ) . 
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Also solved by Richard Andre-Jeannin, Wray G. Brady, Paul S. Bruckman, 
Nicos D. Diamantis, Russell Euler, Piero Filipponi, Herta T. Freitag, Russell 
Jay Hendel, L. Kuipers, Jack Lee, Carl Libis, Bob Prielipp, Jesse Nemoyer & 
Joseph J. Kostal & Durbha Subramanyam, Sahib Singh, Lawrence Somer, 
Gregory Wulczyn, and the proposer. 

Much Ado abou t Zero 

B-647 Proposed by L. Kuipers, Serre, Switzerland 

Simplify 

[£ 2 n + 7 ( - l ) » ] [ L 3 „ + 3 - 2 ( - l ) » £ „ ] - 3(-l)nLn_2L2
n + 2 - V2

Ln-l^+2-

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

The given e x p r e s s i o n s i m p l i f i e s to z e r o . By us ing the Binet form of Lucas 
numbers, i t fo l lows t h a t L2 + 7 ( - l ) n = Ln_2L «• -^n v i - e w °f t h i s s t he given 
e x p r e s s i o n i s 

L oL +0[L, Mo - 2 ( - l ) n L - (LZ.0L -, + 3(-l)nL , 9 ) ] . 
n-2 n + ZL 3n + 3 v / n v n + 2 n~\ n + Z/J 

Again, app ly ing the Binet form of Lucas numbers, we see t h a t 
L 2 0 L , + 3(-l)nL ^ 9 = Lq . - 2 ( - l ) n L „ . 

n + 2 n-\ v J n + 2 3n + 3 v ' n 
Hence, t he r e q u i r e d conc lus ion f o l l o w s . 

Also solved by Paul S. Bruckman, Herta T. Freitag, Y. H. Harris Kwong, 
Carl Libis, Bob Prielipp, H.-J. Seiffert, M. Wachtel, Gregory Wulczyn, and 
the proposer. 

Pell Pr imit ive P y t h a g o r e a n T r i p l e s 

B-648 Proposed by M. Wachtel, Zurich, Switzerland 

The P e l l numbers Pn and Qn a r e def ined by 

Pn+2 = 2 P n + l + Pn> P0 = °> P l = ^ ®n + 2 = 2®n+l + ^ n ' ^ 0 = l = «1 • 

Dkn> P2n + l s 3P2n Show t h a t (P. , P2 + 1, 3Pl + 1) i s a p r i m i t i v e Pythagorean t r i p l e for n i n 
{ 1 , 2 , . . . } . 

Solution by Paul S. Bruckman, Edmonds, WA 

The 

(1) 

(2) 

Hence, 

(3) 

Pell numbers satisfy the following identities: 

2P2n®2n = Phn; 

«L - 2PL = !• 
«L - PL - pL + !• 

I t i s known t h a t p r i m i t i v e Pythagoren t r i p l e s a r e gene ra t ed by 

(4) {lab, a2 - b2, a2 + £ 2 ) , where g . c . d . ( a , 2?) = 1. 

We may l e t a = Q2 , b = P2n. We see from (2) t h a t g . c . d . (a , 2?) = 1. Also 
lab = P ^ [us ing ( 1 ) ] ; 

a2 ~ b2 = P\n + 1 [using (3)]; 
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and 
a2 + b2 3Po + 1 [adding 2b2 to both sides of (3)], 

This proves the assertion. 

Also solved by Nicos D. Diamantis, Ernest J. Eckert, Russell Euler, Piero 
Filipponi, Herta T. Freitag, Russell Jay Hendel, L. Kuipers, Jesse Nemoyer & 
Joseph J. Kostal & Durbha Subramanyam, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, Gregory Wulczyn, and the proposer. 

Sides Differ ing b y 17 

B-649 Proposed by M. Wachtel, Zurich, Switzerland 

Give a r u l e for c o n s t r u c t i n g a sequence of p r i m i t i v e Pythagorean t r i p l e s 
( a„ , bn, cn) whose f i r s t few t r i p l e s a re in the t a b l e 

n 
CLyl 

bn 
Cn 

1 
24 
7 

25 

2 
28 
45 
53 

3 
88 
105 
137 

4 
224 
207 
305 

5 
572 
555 
797 

6 
1248 
1265 
1777 

7 
3276 
3293 
4645 

8 
7332 
7315 
10357 

and which s a t i s f y 
\an - bn\ = 17, 
a < 2 n - l + a2n = 26P2n = h2n~l + h2n> 

and c l n _ l + cln = 26Q2n. 

[Pn and Qn are the Pell numbers of B-648.] 

Rule by Paul S. Bruckman, Edmonds, WA 

(a2n-i, b2n-\, oln-\) 
= (10P2 + 26PnQn - 12Q2, -2kP2 + 26PnQn + 5Q2, 26P2 - lhPnQn + 13^), 

(a2n, b2n, c2n) 

= (-10Pn
2 + 26PnQn + 12«2, 24P2 + 26PnQn - 5Q2, 26P2 + UPnQn + 1 3 ^ ) . 

Rule by Ernest J. Eckert, U. of South Carolina, Aiken, SC 

L e t ( a i , Z?i, C i ) = ( 2 4 , 7 , 2 5 ) , (a2, b2, o2) = ( 2 8 , 4 5 , 53) and A d e n o t e t h e 
m a t r i x 

Then [a2n-i bzn-1 c2n-l^ i s t n e matrix product [a\ Gl]An-1 and 

[a2n b2n c2n] = [a2 o2]A n-\ 

EditorTs note: The derivations and proofs given by Bruckman and Eckert are not 
included because of space limitations; however, since each term in the required 
equations satisfies the same 3rd order linear homogeneous recursion 

wn + 3 = 5(wn + 2 + Wn + l) - Wn, 

it suffices to verify the rules for n = 1, 2, and 3. 

Also solved by Gregory Wulczyn and the proposer. 
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A v e r a g e Age of Genera l ized R a b b i t s 

B-650 Proposed by Piero Filipponi, Fond. U. Bor.doni, Rome Italy 
& David Singmaster, Polytechnic of the South Bank, London, UK 

Let us i n t r o d u c e a p a i r of 1-month-old r a b b i t s i n t o an enc lo su re on the 
f i r s t day of a c e r t a i n month. At the end of one month, r a b b i t s a re mature and 
each p a i r produces k - 1 p a i r s of o f f s p r i n g . Thus, a t the beginning of the 
second month t h e r e i s 1 p a i r of 2-month-old r a b b i t s and k - 1 p a i r s of 0-month-
o l d s . At the beginning of the t h i r d month, t h e r e i s 1 p a i r of 3 -month-o lds , 
k - 1 p a i r s of 1-month-olds, and k(k - 1) p a i r s of 0 -month-o lds . Assuming t h a t 
the r a b b i t s a r e immorta l , what i s t h e i r average age An a t the end of the nth 

month? S p e c i a l i z e to the f i r s t few v a l u e s of k. What happens as n -> °°? 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

I f Ai denotes the average age a t the end of the i t h month, then we have the 
fo l lowing r e c u r r e n c e r e l a t i o n : 

Ai + l = | ( 1 + A^, where A1 = | ; k > 1. 

Using t h i s , we conclude t h a t 

Thus, 
kn \ i=o I kn(k - 1) 

k + 2 k2 + k + 2 
A*. 

1 

A2 = - ^ - ; A3 = - r — , e t c . 

Limit A^ = „ 
n . o o n k - 1 

Also solved by Paul S. Bruckman and the proposers. 

Multiples of a Prime p 

B-651 Proposed by L. Van Hamme, Vrije Universiteit, Brussels, Belgium 

Let UQ, ui, . . . be def ined by u0 = 0, U\ = 1, and un+2 = un+i - un. Also 
l e t p be a prime g r e a t e r than 3 , and for n i n X = { 1 , 2, . . . , p - l } 5 l e t n 
denote t he y i n I wi th nv E 1 (mod p ) . Prove t h a t 

p - i 

£ (n~lun + k) E ° ( m ° d P) 
n= 1 

for all nonnegative integers k. 

Solution by the proposer. 

Let p be a zero of 1 + X + X2. Hence, p3 = 1. Since 

(1 + p)P - 1 - PP = - Q2P~ 1 - PP 

= -(p2 + 1 + p) = 0 if p = 1 (mod 3) 

= -(p-2 + 1 + p-1) = 0 if p = -1 (mod 3), 

p is also a zero of (1 + X)p - 1 - X. Hence, 
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go . - -o . :?!«;>- = »• 
Multiplying the first equation with p^3 the second with p~k, and using the 
easily verified formula 

^ J r y -Yl\ 

we get 

Dividing by p and using 

p\n 
we set the assertion 

-tP) = - ^ - ^ — (mod p ) , 1 < n < p ~ 13 p \ n / n r r 

Also solved by Paul S. Bruckman. 

(continued from page 288) 

Z^(t) represents the number of zeros of ft which are e-close to n^. By invari-
ance of the complex integral, the functions Z^(t) are constant since the func-
tions ft vary continuously and do not vanish on the path of integration. 
Hence., 2^(0) = 2^(1) for each i. This says that in a small neighborhood of 
each zero of f±, there is a one-to-one correspondence of zeros of f± with zeros 
of f0, in the required manner. Q 

In the case of our given functions, we find that the zeros of the polyno-
mial fn{z) are close to the zeros of g (z), which lie on the circle \z\ = as as 
requireds and the zeros of fn get closer to the circle as n •> °°. H 

Also solved by P. Bruckman, O. Brugia & P. Filipponi, L. Kuipers, and the 
proposer. 
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