SOME SEQUENCES ASSOCIATED WITH THE GOLDEN RATIO*

Tom C. Brown and Allen R. Freedman

Simon Fraser University, Burnaby, B.C., Canada V5A IS6 (Submitted June 1989)

A number of people have considered the arithmetical, combinatorial, geometrical and other properties of sequences of the form $([n\alpha]: n \ge 1)$, where α is a positive irrational number and [] denotes the greatest integer function. (See, e.g., [1]-[16]) and the references contained in those papers, especially [8] and [16].)

There are several other sequences which may be naturally associated with the sequence $([n\alpha]: n \ge 1)$. They are the *difference sequence*

$$f_{\alpha}(n) = [(n + 1)\alpha] - [n\alpha] - [\alpha]$$

(the difference sequence is "normalized" by subtracting $[\alpha]$ so that its values are 0 and 1), the *characteristic function*

 $g_{\alpha}(n)$ $(g_{\alpha}(n) = 1 \text{ if } n = [k\alpha] \text{ for some } k, \text{ and } g_{\alpha}(n) = 0 \text{ otherwise}),$

and the *hit sequence*

 $h_{\alpha}(n)$,

where $h_{\alpha}(n)$ is the number of different values of k such that $[k\alpha] = n$. We use the notation

$$f_{\alpha} = (f_{\alpha}(n): n \ge 1), g_{\alpha} = (g_{\alpha}(n): n \ge 1), h_{\alpha} = (h_{\alpha}(n): n \ge 1).$$

Note that $f_{\alpha} = f_{\alpha+k}$ for any integer $k \ge 1$. In particular, $f_{\alpha} = f_{\alpha-1}$ if $\alpha > 1$. Special properties of these sequences in the case where α equals τ , the golden mean, $\tau = (1 + \sqrt{5})/2$, are considered in [5], [12], [14], and [16]. For example, the following is observed in [12]. Let $u_n = [n\tau]$, $n \ge 1$, and let F_k denote the k^{th} Fibonacci number. Given k, let $r = F_{2k}$, $s = F_{2k+1}$, $t = F_{2k+2}$.

$$u_r = s$$
, $u_{2r} = 2s$, $u_{3r} = 3s$, ..., $u_{(t-2)r} = (t-2)s$;

thus, the sequence $([n\tau])$ contains the (t - 2)-term arithmetic progression $(s, 2s, 3s, \ldots, (t - 2)s)$.

It was shown in [16], using a theorem of A. A. Markov [11] (which describes the sequence f_{α} (for any α) explicitly in terms of the simple continued fraction expansion of α), that the difference sequence f_{τ} has a certain "substitution property." We give a simple proof of this below (Theorem 2) without using Markov's theorem. We also make several observations concerning the three sequences f_{τ} , g_{τ} , and h_{τ} .

Theorem 1: The golden mean τ is the smallest positive irrational real number α such that $f_{\alpha} = g_{\alpha} = h_{\alpha}$. In fact, $f_{\alpha} = g_{\alpha} = h_{\alpha}$ exactly when $\alpha^2 = k\alpha + 1$, where $k = \lfloor \alpha \rfloor \ge 1$.

Proof: It follows directly from the definitions (we omit the details) that if α is irrational and $\alpha > 1$, then $h_{\alpha} = g_{\alpha} = f_{1/\alpha}$. (The fact that $g_{\alpha} = f_{1/\alpha}$ is mentioned in [8]. It is straightforward to show that

$$g_{\alpha}(n) = 1 \Rightarrow f_{1/\alpha}(n) = 1$$
 and $g_{\alpha}(n) = 0 \Rightarrow f_{1/\alpha}(n) = 0.$

1991]

Then

157

^{*}Research partially supported by NSERC.

Also, if α is irrational and $\alpha > 0$, then

$$h_{\alpha}(n) = f_{1/\alpha}(n) + [1/\alpha]$$
 for all $n \ge 1$.

Thus, if α is irrational and $f_{\alpha} = g_{\alpha} = h_{\alpha}$, then $\alpha > 1$ (otherwise, g_{α} is identically equal to 1, and f_{α} is not) and

 $f_{\alpha-[\alpha]}(n) = f_{\alpha}(n) = g_{\alpha}(n) = f_{1/\alpha}(n)$ for all $n \ge 1$.

Since the sequence f_β determines β if $\beta<1$, this gives α - $[\alpha]$ = $1/\alpha,$ and the result follows.

Definition: For any finite or infinite sequence w consisting of 0's and 1's, let \overline{w} be the sequence obtained from w by replacing each 0 in w by 1, and each 1 by 10. For example, $\overline{10110}$ = 10110101. (Compare "Fibonacci strings" [10, p. 85].)

Note that $\overline{uv} = \overline{u} \cdot \overline{v}$, and that $\overline{u} = \overline{v} \Rightarrow u = v$ by induction on the length of v.

Theorem 2: The sequences f_{τ} and $\overline{f_{\tau}}$ are identical.

Proof: First, we show that if $0 < \alpha < 1$, then $\overline{f_{\alpha}} = g_{1+\alpha}$. Let L(w) denote the *length* of the finite sequence w, so that if $w = f_{\alpha}(1)f_{\alpha}(2) \ldots f_{\alpha}(k)$, then

 $L(\overline{w}) = k + f_{\alpha}(1) + \cdots + f_{\alpha}(k) = k + [(k + 1)\alpha].$

Thus,

 $[\overline{f_{\alpha}}(n) = 1] \iff [n = L(\overline{w}) + 1 \text{ for some initial segment } w \text{ of } f_{\alpha}]$

 $\Leftrightarrow [n = [(k + 1)(1 + \alpha)] \text{ for some } k \ge 0] \Leftrightarrow [g_{1+\alpha}(n) = 1].$

Therefore, $\overline{f_{\tau}}$ = $\overline{f_{\tau-1}}$ = g_{τ} = $f_{1/\tau}$ = $f_{\tau-1}$ = f_{τ} .

Corollary 1: The sequence f_{τ} can be generated by starting with w = 1 and repeatedly replacing w by $\overline{w}.$

Proof: If we define $E_1 = 1$ and $E_{k+1} = \overline{E_k}$, then, since $\overline{1} = 10$ begins with a 1, it follows that, for each k, E_k is an initial segment of E_{k+1} . By Theorem 2 and induction, each E_k is an initial segment of f_{τ} . Thus,

$$E_1 = 1$$
, $E_2 = \overline{E_1} = 10$, $E_3 = \overline{E_2} = 101$, $E_4 = \overline{E_3} = 10110$,
 $E_5 = \overline{E_4} = 10110101$, etc.,

are all initial segments of $f_{\rm T}$. (These blocks naturally have lengths 1, 2, 3, 5, 8,)

Corollary 2: For each $i \ge 1$, let x_i denote the number of 1's in the sequence f_{τ} which lie between the i^{th} and $(i + 1)^{\text{st}}$ 0's. Thus,

 $f_{\tau} = 10110101101101011011011011011011011$

 $(x_n) = 2 1 2 2 1 2 1 2 2 1 2 2 \dots$

Then the sequences $(x_n - 1)$ and f_{τ} are identical.

Proof: If we start with the sequence (x_n) and replace each 1 by 10 and each 2 by 101, we obtain the sequence f_{τ} . Since $\overline{0} = 10$ and $\overline{1} = 101$, this shows that $(\overline{x_n - 1}) = f_{\tau} = \overline{f_{\tau}}$. Therefore, $(\overline{x_n - 1}) = \overline{f_{\tau}}$, and, finally, $(x_n - 1) = f_{\tau}$.

References

- 1. T. Bang. "On the Sequence [na]." Math. Scand. 5 (1957):69-76.
- 2. I. G. Connell. "A Generalization of Wythoff's Game." Can. Math. Bull. 2 (1959):181-90.
- 3. I. G. Connell. "Some Properties of Beatty Sequences I." Can. Math. Bull. 2 (1959):190-97.

[May

- 4. I. G. Connell. "Some Properties of Beatty Sequences II." Can. Math. Bull. 3 (1960):17-22.
- 5. H. S. M. Coxeter. "The Golden Section, Phyllotzxis, and Wythoff's Game." Scripta Math. 19 (1953):135-43.
- 6. A. S. Fraenkel. "The Bracket Function and Complementary Sets of Integers." Can. J. Math. 21 (1969):6-27.
- 7. A. S. Fraenkel & J. Levitt. "Characterization of the Set of Values $f(n) = [n\alpha]$, n = 1, 2," Discrete Math. 2 (1972):335-45.
- A. S. Fraenkel, M. Mushkin, & U. Tassa. "Determination of [nθ] by Its Sequence of Differences." Canad. Math. Bull. 21 (1978):441-46.
- 9. R. L. Graham. "Covering the Positive Integers by Disjoint Sets of the Form $\{[n\alpha + \beta]: n = 1, 2, ...\}$." J. Combinatorial Th. (A) 15 (1973):354-58.
- 10. D. Knuth. The Art of Computer Programming. Vol. I. 2nd ed. New York: Addison-Wesley, 1973.
- 11. A. A. Markoff. "Sur une question de Jean Bernoulli." Math. Ann. 19 (1882): 27-36.
- 12. N. S. Mendelsohn. "The Golden Ratio and van der Waerden's Theorem." Proc. 5th SE Conf. on Combinatorics, Graph Theory, and Computing, Congressus Numerantium 10 (1974):93-109.
- 13. I. Niven. Diophantine Approximations. New York: Wiley, 1963.
- 14. J. Rosenblatt. "The Sequence of Greatest Integers of an Arithmetic Progression." J. London Math. Soc. (2) 17 (1978):213-18.
- 15. Th. Skolem. "On Certain Distributions of Integers in Pairs with Given Differences." *Math. Scand.* 5 (1957):57-68.
- 16. K. B. Stolarsky. "Beatty Sequences, Continued Fractions, and Certain Shift Operators." Canad. Math. Bull. 19 (1976):473-82.
