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1. Introduction 

The characteristic equation of the sequence of Fibonacci numbers is 

(1.1) x2 - x - 1 = 0; 

its roots a = (1 + v5)/2 and 3= (1 - v/5)/2 play an important role in the theory 
of Fibonacci numbers and other related matters. The Fibonacci numbers have 
been generalized in various ways. One such generalization and the correspond-
ing characteristic equations were recently studied by Horadam and Shannon [3]: 

Define the polynomials (j) (x) by C|)Q = 0, and 

(1.2) (j>n(x) = xn~l + xn~2 + ... + x + 1 (n > 1). 

The "cyclotomy-generated polynomial of Fibonacci type" of degree n2 + n is then 
defined by 

(1.3) pn(x) = X"2-" - 4,n2+n - X^X ^ i z ± + X2n * ^ n . 
Vn + 1 Vn 

It is easy to see that p±(x) is the left-hand side of (1.1). 
In [3], both real and complex zeros of pn(x) were studied. However, some 

of the more interesting properties were given only in the form of conjectures. 
It is the purpose of this paper to provide proofs of these conjectures, based 
on some classical results from the geometry of polynomials. Furthermore, it 
will be shown that the main factor of pn(x) is irreducible over the rationals 
for all n, and that the unique positive zeros of p (x) are Pisot numbers. 

2. Roots of Unity 

Horadam and Shannon [3] observed that n2 - n complex zeros of p (s) lie on 
the unit circle for small n; they conjectured that this is true for all n. The 
following proves this conjecture. 

Proposition 1: p (2) has the n2 - n zeros zk = exp(2iri/c/n(n +1)), where k = 1, 
2, ..., n2 + n - 1, excluding multiples of n and of n + 1. 

Proof: Note that we may write §n(x) = (xn - 1) / (x - 1) for x * 1. With (1.3) we 
get 

(xn + l - l)(xn - l)(x - l)pn(x) 
= xnl + n(xn+l - l)(xn - l)(x - 1) - (xn2+n - l ) ( x n + 1 - l ) ( x n - 1) 

- x2n+1(xn2-1 - l)(xn - l)(x - 1) + x2n(xnl- - l)(xn + 1 - l)(x - 1) 
= xn2+3 + 2 - 3xn2+3 + l + xn2 + 3 + xn2+2 + l + xn2+2 - xn2+n 

- x2n + z + 3x2n + l - x2n - xn + l - xn + 1 
= (xn2 + n - l)(x2n + 2 - 3x2n+l + x2n + x n + 1 + xn - 1 ) , 

and, t h e r e f o r e , 
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( 2 . 1 ) V (x) = (xZn+Z - 3x2n+l + X2n + Xn + l + Xn~ 1 ) . 
(xn + l - \){xn - 1)(X - 1) 

This proves the proposition* since xn +n - 1 has zeros zk = exp(27Ttfc/n(n + 1))5 

where Zn, %2n9 9 " °  a r e cancelled by the zeros of xn+1 - 1, and 3n+1, #2(n+1) s 

... are cancelled by the zeros of xn - 1. 

3. Roots within the Unit Circle' 

It is clear from (2.1) that the remaining zeros of p (z) are those of 

(3.1) /„(£): = s2 n + 2 - 3z2n+l + z2n + zn + l + sn - 1. 

First? we note that fn(z) has a double zero at z = 1, since zn+l - 1 and 3n - 1 
have simple zeros at 2 = 1, while p (1) = 1 - n2 - n ^ 0 ? by (1.3). Hence, we 
may consider 

(3.2) rn(z): = fn(z)/{z - I)2 

= z2n - z2n~l - 2 s 2 n _ 2 - . . . - nzn - nzn~l - (n - l)zn~2 

- . . . - 2z - 1 

(see a l s o [ 3 , p . 9 1 ] ) . We no t e t h a t we can w r i t e 

/ o o \ / \ 9r7 ( 1 — S ) ( 1 — S ) 
(3 .3 ) r (z) = s Z n - ^ —^—-p *-. 

n (1 - z)L 

The following three propositions show that all but one of the zeros of vn(z) 
lie in a narrow annular region just inside the unit circle, and that the argu-
ments of all In zeros are quite evenly distributed. 
Proposition 2: For all n > 1, the zeros of rn(z) lie outside the circle 

\z\ = (l/3)1/n. 

Proof: We apply Rouchefs Theorem (see, e.g., [4, p. 2]). Departing from (3.3), 
we let 

PCs): = z2n and Q{z) : = -(1 - zn) (1 - <?n + 1)/(l - 2) 2. 

Set t: = \z\. Now, for £ < 1, 

I , (1 - tn)(l - tn + 1) _ 1 - tn - tn+l + t2n+1 

^ U ) | " (1 + t) 2 " (1 + t) 2 

while 

|P(JS)| = t2n. 

Hence, we have |S(s)| > \P(z)| when 

1 - tn - tn+l + t2n+1 , M9n 

(i + ty2 

which is equivalent to 

tn(l + t + tn + tn + 1 + tn+2) < 1; 

this holds when 

tn(2.+ 3tn) < 1 

(since £ < 1) . But this last inequality is satisfied for tn = 1/3. Hence, by 
Rouchefs Theorem, rn{z) = P{z) + Q(z) has the same number of zeros within the 
circle \z\ = (l/3)1/n as does Q(z), namely, none at all, since all the zeros of 
Q(z) have modulus 1. Also, the above inequalities show that there can be no 
zero on this circle. The proof is now complete. 
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(3 .5 ) 
where 

and 

rn(z) = gn(z)hn(z), 

gn(z) = \ V - zn~l 

h„(z) = 5 + lzn + a*"1 

Proposition 3: For n > 1, P„(S) has 2n - 1 zeros within the unit circle. 

Proof: It is easy to verify the following factorization. For any a, 

(3.4) (a + l)azZn - z2n~l - 2zln~2 - . .. - nzn - nzn~l - (n - Ds*" 2 

- ...- 2z - 1 

= [(a + l)sn + sn_1 + ... + z + l][asn - zn~l - ... - z - 1]. 

In particular, if we set a = (/5 - l)/2, then (a + l)a = 1, and with (3.1) we 
get 

1, 

.,„v~, 2 ~ • ~ • ... + Z + 1. 

The Kakeya-Enestrom Theorem (see, e.g., [4, p. 136] or [7, Prob. III. 22]) now 
shows immediately that all n zeros of hn(z) lie within the unit circle. To 
deal with gn(z)9 we consider 

(3.6) (z - l)gn(z) = ^ ~ lz"+l - ^ 2
+ lzn + 1. 

By Pelletfs Theorem (see, e.g., [4, p. 128]), n zeros of (z - l)gn(z) lie on or 
within the unit circle. But z = 1 is the only zero on the unit cricle, since 
the difference of the complex vectors ((/5 - l)/2)zn+l and ((/5 - l)/2zn has 
length one only if they are collinear; (3.6) then implies 3 = 1 . Hence, gn (z) 
has n - I zeros within the unit circle. (We remark that this fact also follows 
directly from Theorem 2.1 in [2].) The proof is now complete, with (3.5). 

It was remarked in [3] that the complex zeros of pn(z) not located on the 
unit circle appear to lie close to the "missing" roots of unity (see 
Proposition 1 above). With regard to this, we have the following result. 

Proposition 4: For n > 1, rn(z) has at least one zero in each sector 

arg z - —TT k = 0 , 1, . . . , 2n 
n + V 

Proof: We use the f a c t o r i z a t i o n ( 3 . 5 ) . In analogy to ( 3 . 6 ) , we have 

(3.7) (z - l)hn{z) - ^ 2
+ lzn + l - ^ ~ V - 1. 

Equation (3.7) can be brought into the form azn + l + zn + 1 by replacing z by 
((1/5 + l)/2)l/nz. The result of [4, p. 165, Ex. 3] implies that (z - l)hn{z) 
has at least one zero in each of the sectors 

(3.8) 2k + 1 arg z TT n + V 0, 1, ..., n - 1. 

The trivial zero z = 1 (i.e., arg z = 0) is not contained in any of these sec-
tors; hence, exactly one zero of hn(z) lies in each of the sectors (3.8). 

To deal with the factor gn(z), we consider (3.6) and replace z by 

(ei7f(/5 - l)/2)l/nz. 
This brings the right-hand side of (3.6) into the form a'zn+l + zn + 1 for some 
complex af. We now apply a well-known result on the angular distribution of 
the zeros of certain trinomials (see [4, p. 165, Ex. 3]) and "rotate" the 
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r e s u l t i n g s e c t o r s by an ang le of TT / n« 
l e a s t one zero in each of the s e c t o r s 

This shows t h a t (z - l)gn(z) has a t 

(3 .9 ) a rg z -
Ik 

n + I5 k = o, l , n - 1, 

But the sector belonging to k = 0 contains two zeros, namely, 3 = 1 and the 
unique positive zero of gn(z) (by Descartes?s Rule of Signs; see, e.g., [6, p. 
45]). Hence, each sector (3.9) contains exactly one zero of g (s) . This 
proves Proposition 4. [We have actually proved a slightly stronger statement; 
but the sectors (3.8) and (3.9) are overlapping.] 

Remark: As we just saw, the trinomials on the right-hand sides of (3.6) and 
(3.7) can be brought into the form f(z) s 

consider the inverted polynomial 
,n+ 1 + Zn + 1. One could also 

r\z) = zn+'fa/z) yn + l + z + a, 

the zeros Zj of which are the inverses of the zeros Zj of f(z) relative to the 
In this regard, we mention unit circle (i.e., Zj - l/z~j ; see [4, p. 194]), 

that the trinomials zn + ^ - (n + 1)z + n = 0 were studied in [5]; very exact 
bounds on the arguments and the moduli of the zeros of these trinomials were 
obtained. Probably the methods in [5] could be used to obtain similar results 
for the trinomials in (3.6) and (3.7). 

4. Real Roots 

with 

(4.1) 

Horadam and Shannon [3] showed that p (z) has exactly one positive zero Xin 

lim X\n = 
/5 + 3 /5 + 1\2" 

= m this is the one zero not covered by Proposition 3. 
pn(%) has exactly one negative zero x^n with -1 < 
conjecture under the condition that the 
hence, the existence of this negative 
conjectured in [3] that 

They also conjectured that 
X2n < 0. They proved this 

above is true; 
It was also 

factorization (2.1) 
zero is established 

(4.2) lim x2n -i; 

this follows immediately from Propositions 2 and 3. Our aim in this section is 
to give quantitative versions of (4.1) and (4.2). 

Let Gn{z) and En{z) denote the trinomials on the right-hand sides of (3.6) 
and (3.7), respectively. By Descartes?s Rule of Signs, Gn{z) has two positive 
zeros ( s = l and z = Xin).9 while Hn(z) has only one positive zero (z = 1). As 
to the negative zeros, we consider Gn(-z) and Hn(~z). The signs of the coeffi-
cients of Gn(-z) are (-1)" + 1, (-l)n+1, 1; that is, there is one sign change 
when n is even and none when n is odd. Hence, Gn(z) has a negative zero 
(namely, xln) only when n is even. The signs of the coefficients of Hn(~z) are 
(-l)n+1, (_i)n+ls _i; this implies that Hn(z) has a negative zero (namely, x2n) 
only when n is odd. 

The following results give estimates on the location of these zeros. 

= ( /5 + l ) / 2 . Then, for a l l n > 1, Proposition 5: Let 
a 2 ( l - a _ 2 n ) < xln < a z ( l - a -2n-l ) 9 

with equality only for n 
xln ~ a2(l ~ a~2n 

= 1. Furthermore, we have, asymptotically, 
_1) as n •> «>. 
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Proof: It suffices to find two points at which Gn(z) has opposite signs. It is 
easy to see that, for any e, we have 

Gn(a2 _ £) . _£ ̂ L L - 1 ( O 2 - E)» + 1, 

and therefore, for arbitrary numbers a, 

(4.3) Gn(a2 - aa~2n) = -a 3 " X(l - aa"2 n~ 2) n + 1. 

First, we let a = a. Since (1 - a ~ 2 n - 1 ) n < 1 for all n, we get 

(4.4) Gn(a2 - a1_2n) > 0 for n > 1. 

In the other direction, we set a = a2. It is easy to see (using calculus) that 
(1 - a~2n)n is an increasing sequence for n > 1. Thus, we get, with (4.3), 

Gn(a2 - a2~2n) < Gx(a2 - 1) = 0, 
with equality only for n - 1. This, together with (4.4), proves the first 
statement of the proposition. The asymptotic expression follows from the fact 
that, for any real a, we have (1 - aa~2n~2)n -* 1 as n ->- °°. 

Proposition 6: For all n > 2, we have 

(4.5) - l + £ <x2n < - l + ^ . 

and we have, asymptotically, 

^2n ~ -1 + - ^ ~ as n + oo. 

Proof: First, let n be even. Then, for any a, we have 

r i r\ n I i . ^ \ _ / i ^ \ I / r w. V 5 *..) fl,(-l+|)..(l-S)-[^-S^]tl. 
We note that (1 - a/n)n is an increasing sequence for n > 2, at least when a 
1/2. Hence, for all n > 2, 

1 / 7 3 • + i < o . ».(-'^)«ft(-^i)--('-in«-^] 
In the other direction, we use the fact that (1 - (log 5)/2n)n < 1//5 for all 
n. Hence, with (4.6), 

' - ( - ^^)>-^ + i - o . 
This proves (4.5) for even n. If n is odd, we have, for arbitrary a, 

<*•'> " . ( - '^ - ( ' -sn^-s^f 1 ] - ' -
We find that, for n > 3, 

while, again with (4.7), 

« . ( - i * ^ ) « ^ - i - o . 
This completes the proof of (4.5). The asymptotic expression follows from 
(4.6) and (4.7), and from the fact that (1 - a/n)n -> e~a as n -> °°. 
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Remarks: (1) The zero x2l = -1/a = -0.61803; it does not satisfy (4.5). 

(2) As an illustration for Propositions 5 and 6, see Table 3 in [3], 
The two results also explain the observation in [3] that "the negative root 
approaches its lower bound more slowly than the positive root approaches its 
upper bound." 

5. Some Algebra 

In the theory of uniform distribution modulo 1, sequences of the type oo" 
supply important special cases (see, e.g., [8, p. 2]). For instance, it is 
known that a)n is uniformly distributed modulo 1 for almost all (in the Lebesgue 
sense) numbers oo > 1, but very little is known for particular values of a). On 
the other hand, it is of interest to study "bad" examples of cu, namely, those 
for which the sequence ajn is very "unevenly" distributed modulo 1. 

One such example is w = a = (1 + A)/2; its conjugate is 3 = (1 - /5)/2. 
Now an + 3n are the Lucas numbers 2, 1, 3, 4, 7, ... and thus are rational 
integers, so that 

an + 3n = 0 (mod 1). 

But |$| < 1, and so 3" -> 0 as n -> °°, which implies that an •> 0 (mod 1). 
Hence, an (modulo 1) has a single accumulation point. a shares this prop-

erty with a wider class of algebraic numbers (see [8] or [1]). 

Definition: A.Pisot number is an algebraic integer 0 > 1 such that all of its 
conjugates have moduli strictly less than 1. 

Theorem (Salem [8]): If 0 is a Pisot number, then 0 + 0 (mod 1) as n •> °°. 

The proof of this theorem is similar to the above discussion on the proper-
ties of an. 

It is our aim now to show that the unique positive zeros X\n of the poly-
nomials p (x) are Pisot numbers. First, we need the following result, 

Proposition 7: The polynomials rn(x) are irreducible over the rationals. 

We have seen in the previous sections that rn(z) has In - 1 zeros satis-
fying \z\ < 1 and one zero satisfying \z\ > 1. Also, rn{z) is a monic polyno-
mial with rational integer coefficients. If Pn(z) were reducible over the 
rationals, then, by Gauss's Lemma, ^n(s) = G(z)H(z) for suitable monic 
polynomials G(z), H(z) of positive degrees with rational integer coefficients. 
One of these polynomials, say G(z), must have all its zeros of modulus strictly 
less than one. Hence, the constant term of G(z) (the product of all its zeros) 
has modulus |£(0)| < 1. But this contradicts the fact that the constant term 
of G(z) is a nonzero integer. 

Remark: The proof of Proposition 7 is taken from [9] where, by the way, a tri-
nomial similar to (3.6) and (3.7) is considered. See also the remark on page 
12 in [1]. 

Proposition 8: The unique positive zeros Xin of vn(z) are Pisot numbers for all 
n > 1. 
Proof: This follows from Proposition 7 and the results on the zeros of rn(z) in 
the previous sections. 

We close with a factorization involving Fibonacci numbers. Equation (3.4) 
shows that the left-hand side of (3.4) splits into two factors of equal degree 
if a is rational. On the other hand, Proposition 7 shows that this polynomial 
is irreducible over (J for a = (/5 - 1)/2. These remarks suggest that we set 
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a = Fk/Fk+i (where Fk i s t he kth F ibonacc i number) , as i t i s w e l l known t h a t 

Fk/Fk+l + ( /5 - l ) / 2 for k + <»; 

t h e s e f r a c t i o n s a r e a c t u a l l y the b e s t r a t i o n a l approx imat ions to (v5 - l ) / 2 . 
If we t ake i n t o account 

a+ 1 = Fk/Fk+1 + 1 = Fk+2/Fk+1 
and 

(a + l)a - ^ + 2 V ^ ? + l = (Fk\x - 1)/Fk
z
+1, 

we o b t a i n the f a c t o r i z a t i o n 
(1 - F^l)z2n - z2n~l - 2z2n~2 - . . . - nzn - nzn~l - (n - l)zn~2 

- . . . - 2z - 1 

= t ^ + 2 / F / c + l ^ n + Zn~l + ••• + ^ + l ] [ ( ^ / ^ + 1 ) ^ n " 3 n _ 1 

- . . . - 2 - 1 ] . 

We note that the left-hand side of this factorization converges quite rapidly 
to vn (z) as k •> °°, uniformly on compact subsets of t. 
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