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0. Introduction 

The notion of a uniformly distributed sequence mod 1 is a classical tool of 
number theory (see, e.g., [1], [2]), but it is well known that there exist 
sequences which are not uniformly distributed; it turns out that this kind of 
sequence is more conveniently treated by notions other than the classical ones. 

In this paper one such notion is used, which enables us to study the 
sequence formed by the fractional parts of decimal logarithms of the integers 
(it is well known that this sequence is not uniformly distributed in the 
classical sense; see, e.g., [1]). 

With our result, we obtain a simple solution of the so-called first digit 
problem. 

1. Preliminary Results 

In this section we list some definitions and results used in the sequel. 
We begin with the definition of uniform distribution with respect to a measure 
on IN*. 

Definition 1.1: Let u be a measure on. IN*, which we assume to be positive and 
unbounded; for each integer n9 write 

Sn = y([l, n]). 

Now let (#n)w->i be a sequence of real numbers in [0, 1]. We say that (xn)n>1 
is y-uniformly distributed in [0, 1] if, for each function f in C([0, 1])3 we 
have n 

lim ̂ -L— = / f(x)dx. 
n + oo on Jo 

Remark 1.2: It is easily seen that we may replace (Sn) by any equivalent se-
quence . 

Remark 1.3: The notion of uniform distribution in the sense of Definition (1.1) 
has been introduced by other authors, although they used different names and 
symbols. 

It is also clear that it can be expressed by saying that the sequence of 
measures (vn)n>x on [0, 1] defined by 

y{« 

weakly converges to the Lebesgue measure on [0, 1] (see, e.g., [8]). 

In what follows, we shall use the following proposition, a direct conse-
quence of well-known results concerning weak convergence; note that it is a 
straightforward generalization of a classical theorem in number theory (see 
[1], [2]). 

*Lavoro svolto nell'ambito del GNAFA e con finanziamento del MPI. 
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Proposition 1.4: The following conditions are equivalent: 

(a) (xn)n>i i s U-uniformly distributed in [0, 1]; 
(b) for every interval [a, b[ in [0, 1], we have 

f>a}i[a,M(*^ 
lim = b - a, 

n. •> oo & n 

where K ,, stands for the indicator function of [a, b[> 

For each integer n, write 

(1.5) Hn = exp Sn. 

We shall assume that the sequence (Hn)n>l is obtained by restriction to I* 
of a function H defined on E.+ and having the following property: 

(1.6) There exists a positive constant I and an increasing, slowly 
varying function L such that 

H(y) = ylL(y). 

(We recall that L varies slowly at infinity if, for every x > 0, we have 
. L(xy) 

lim — — — = 1. 
y++00 L(y) 

For further properties, see [5].) 

To handle the case I = 0, we make an additional assumption: 

(1.7) For each (a15 a2, a3, a^) in E.4, where ax, a2, a3, a^ are strictly 
positive numbers such that a^ * a2, cc3 ^ a^, we have 

L{axy) - L(a2y) L(a3y) - L(a^y) 

log(a1a21) log(a3a^1) 

as y converges to infinity. 

We prove the following proposition. 

Proposition 1. 8: 
L(x + y) 

(a) For every x > 0, we have lim — = 1. 
z/->+oo •L'i.y) 

(b) In the case I = 0, for each (b±9 b2, b3, b^) in H*4, where 
b-,, b2, bo9 b, are positive numbers, we have 

L{aYy + Z?1) - L(a2y + b2) L(a3y + b3) - Lja^y + bh) 

log(a1a^1) log(a3a^1) 

as y converges to infinity. 

Proof: Part (a) follows from the inequalities 

L{x + y) L{2y) 
L(y) ~ L{y) ' 

the second of which holds for y sufficiently large. 
The assertion of part (b) is proved by noting that, for every e > 0, we 

have, for y sufficiently large 
L{aYy) - L((a2 + e)y) L{axy + b{) - L(a2y + b2) L({al + e)y) - L(a2y) 

L((a3 + e)y) - L(a^y) L(a3y + b3) - L(a^y + bh) L(a3y) - L((ah + e)y) 
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Definition 1.9: Let u be a measure on M* ; we say that u has property P if (1.6) 
holds [in the case A = 0, if (1.6) and (1.7) hold]. 

We shall also use some results concerned with the notion of density on IN*, 
which is studied, for example, in [6]. 

Definition 1.10: Let u be a measure on IN*, and (Sn) its distribution function as 
defined in Definition (1.1). 

Consider the density onl* generated by the sequence of measures, (y)n>i» 
defined as follows: 

_ _1_ 
Vn " Sn ^n] * y ; 

this density will be called the u-density. 

Definition 1.11: For each t > 0, l e t fit be t he measure o n l * def ined by 

ft* = 2 [exp(-^fe) - exp(-tSk + i)]ek, 
k> 1 

The density generated by (yt) will be called the exponential density with 
respect to u (or, more briefly, the u-exponential density). 

We state the following result, the proof of which is given in [6]. 

Proposition 1.12: Assume that the sequence (u{n})„>]_ is bounded. Then the u~ 
density and the u-exponential density agree everywhere. 

The following theorem, proved in [7], gives a practical method for calcu-
lating an. exponential density. 

Theorem 1.13: Let (£ n) n > 1 , (Wn)n>i ^e t w o sequences of positive real numbers, 
such that 

(i) lim ln = lim mn = + °°  and %n < mn < ln + \ for every integer n; 
n -»- 0°  n •* oo 

(ii) the sequence (jnn - ln)n>l is bounded; 
(iii) we have mn ~ mn + \> ln ~ ln + \ as n converges to infinity. 

Last, let A be a real number, with 0 < A < 1; then the following conditions 
are equivalent: 

(a) l im ]L-1 = A; (b) l im - ^ = A; 
n -> oo /77 n yz ->- oo £ w 

(c) l im 2 [exp(-£JU) - exp(-£/7?7,) ] - 4 . 
w •>• 0 + fc > 1 

2 . The Theorem of Uniform D i s t r i b u t i o n 

We shall prove the following result. 

Theorem 2.1: Let u be a measure on IN*, with property P. Then the sequence 
({log]_o?z})n > 1 is u-uniformly distributed in [0, 1]. 

Proof: Proposition (1.4) applies, so we can show that, for every interval [a, b[ 
in [0, 1], we have 

X > w i [ a M({iog10fc}) 
l im = b - a. 
n+co log #„ 
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We can write 

where E is the subset of M* the elements of which are the integers k satisfying 
the relation 

ion + a < k < ion + z? 

for some integer n; hence, calculating the limit above amounts to finding the 
U-density of E (in the sense of Definition 1.10). 

First we note that, because of the relations 
1Qn+b _ 1Qn+a > l a n d 1Qn+a+l „ lQn+b > ^ 

which hold for n sufficiently large, E is neither finite nor cofinite. Denote 
ky (Pn)w>i' (cln\>i t n e t w o sequences of integers such that 

s = U [ P „ , <?»[• 
?2 > 1 

Moreover, for every x > Q, write 

x if x is an integer 
Ux) = 

* [x] 4- 1 otherwise, 
so that we have the obvious relations 

pn = Ml0" + a ) ; qn = Hion + h ) . 
Because of our hypotheses on y, t>he sequence (\i{n})n >]_ is bounded; hence. Pro-
position 1.12 applies, and our goal is equivalent to finding the y-exponential 
density of E, that is, we calculate the limit 

lim ]T [exp(-t log Hp ) - exp(-i log #?„)]; 
t + 0+ n> 1 n 

we do this by means of Theorem 1.13, where we put 

ln = log HPn ; mn = log Hqn. 

The inequalities x < $(x) < x + 1, together with Proposition 1.8, give 

iim = £> - a; 

now, a well-known theorem of Cesaro gives the same value for the limit we con-
sidered in Theorem 1.13(a). 

Remark 2.2: Paper [3] treats, using different techniques, the particular case 
of the preceding theorem where u{n} = 1/n (so that Sn ~ log n ). Paper [3] also 
contains a reference to another paper [4] in which the same particular case is 
studied. The same result is extended in a different direction in Theorem 7.16 
on page 64 of [1]. 

Now, let v be an integer, with 1 < v < 9 and, in the proof of Theorem 2.1, 
take a = log1Qp, b = log10(r + 1); then E turns out to be the set of integers 
the decimal expansion of which has r as the first digit and the preceding proof 
gives _rc 

l l m = i0g # 

« — u([l, n]) 10 r 
This simple remark may be rephrased as follows: 
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Corollary 2.3: Let E be the set of integers the decimal expansion of which has 
r as the first digit; if p is a measure on IN* satisfying the property P, then 
the y-density of E is log1Q(p + I)IT, 
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