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Introduction 

The properties of the period lengths of the continued fraction convergents 
modulo m of reduced quadratic irrationals are studied in this paper. These 
period lengths vary wildly, yet will be shown to satisfy strong divisibility 
properties. Wall [6] studied these period lengths for the Fibonacci numbers 
that arise as convergents of the simple continued fraction with all partial 
quotients equal to 1. Many other papers, including [1], [3], [4], and [5], 
extend and complement those results. Some of the theorems in Wall extend in a 
direct manner to the continued fraction investigation given here; however, a 
key theorem of Wall about occurrences of zeros does not generalize so that new 
approaches are required. In some cases, known properties of continued frac-
tions, for a reference see Rosen [2], yield simpler proofs for the analogs of 
theorems from Wall. Two theorems presented here give properties of the periods 
for reversals and rotations of the continued fractions which have no analogs 
from the Fibonacci numbers. Matrix computation of the convergents is developed 
and analyzed to produce further results including remarkably good bounds on the 
period lengths. 

Definition of the Period 

Reduced quadratic irrationals, denoted a in this paper, are those real num-
bers that have purely periodic simple continued fraction expansions. Consider 
such an a: 

1 
a = a1 -I 

a -\ 

where a^ E Z+ and t is chosen as small as possible. This is abbreviated by 
a = [ a\, a^_y . . . , â "] , where t is said to be the period of a. Associated with 
each continued fraction are the p,q sequences defined in the following manner: 

P_l = 0'. p0 = 1, pn = anPn^ + pn_z, 

"This work was done at Moravian College during an NSF REU program which was supported by grant 
DMS-8900839. 

220 [Aug. 



THE PERIOD OF CONVERGENTS MODULO M OF REDUCED QUADRATIC IRRATIONALS 

We i l l u s t r a t e the ca l cu l a t i on of these sequences with a = (1 + v3)/2 = [ 1 , 2 ] . 
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Below are the values in t h i s t ab le modulo 2. One can see tha t the sequence p 
the sequence q , and both sequences taken together are a l l p e r i o d i c . 
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Theorem 1: The p,q sequence modulo m i s purely p e r i o d i c . 

Proof: Consider the 2 x 2 block of p ' s and q' s (mod m) a t st - 1 and s t , where 
s = 0, 1, 2, . . . and t i s the period of a. Since there are only m* p o s s i b i l i -
t i e s for t h i s block, i t eventual ly repea ts so t h a t , for some i , j , say with 
i < j , 

Pit-l E P j t - l * Pit E Pjt> 

l i t - i - Ijt-i* t i t E <lot (m o d "*>• 

Since ait+n = ajt+ns the defining relations give that the p,q sequence repeats. 
Also, from the defining relations, we see that 

Pit -2 = Pit ~ aitPit-l E Pjt ~ ajtPjt~l = Pjt-2 

Pit-3 = Pit-l ~ ait-lPit-2 E Pjt-1 ~ ajt-lPjt-2 = Pjt-3 

Pit-(it-i) = Pi = Pjt-(it-i) = P(j-i)t.+ r 

The same argument holds for the q sequence. Therefore, the p, q sequence is 
purely periodic. • 

The period of the p,q sequence modulo m is denoted k(a, m), or k(m), or k 
if no ambiguity occurs. It is evident from the proof of this theorem that 
k(a, m) < mht. The remainder of this paper will explore the properties of 
k(a, 777). 

Elementary Properties 

In light of the initial conditions for the p,q sequences and the definition 
of k, we get an immediate corollary. 

Corollary 2: When k = k{m) , then pk_l = 0, pk E 1, qk_Y = 1, and qk = 0 modulo m. 

Next is a theorem which establishes that k is even for all moduli greater 
than 2. 

Theorem 3: If m > 2, then k(m) is even. 

Proof: Suppose that A: = k{m) is odd. Then, by using the continued fraction 
identity Vk^k-l ~ Pk-l°tk= (~^k a n d substituting the values of the p,q sequence 
from the corollary into this equation, we have (1)(1) - (0) (0) = -1 mod 777. 
Therefore, 2 E 0 mod 777, which implies a modulus of 2. • 

Theorem 4: If mi\mz> then k(mi) \k(mz) • 

Proof: Let k = kirn?) and mi\ m^, then T^lp^-l implies 777\\pk-\> and w2|^fe-l ~ 1 
implies ?TZI | ̂7fc— i ~ 1- Likewise, for pk - 1 and qk. Hence, k(jn\) | kijn^ . D 
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The following theorem shows that, if the periods of the prime power factors 
of a modulus are known, then the period of the modulus can readily be calcu-
lated. 

Theorem 5: If m has the prime factorization m = IIpf* and if ki denotes the 
length of the period of the p,q sequence mod p&i, then k(m) = lcm[k^] . 

Proof: Since k^\k for all i, ±cm[ki]\k. On the other hand, since pk E 1 mod pe.1 

for all i, pk E 1 mod lcm [p/*]. Similarly, p^-i E 0, qk_i E I, qk E 0. There-
fore, k\lcm[ki]. D 

For the sequence of Fibonacci numbers modulo m, the zeros are known to be 
in arithmetic progression. The placement of zeros is not simple for continued 
fractions in general. Consider an example with m - 3: 

ani | 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 

pn: 0 1 0 1 2 1 1 0 1 2 2 2 0 2 0 2 1 2 2 0 2 1 1 1 0 1 
qn

n: 1 0 I 1 2 1 2 0 2 0 2 1 2 2 0 2 1 1 1 0 1 0 1 2 1 1 0 

The theorem below begins giving insight into the structure of the convergents 
without controlling the zeros. 

Notice that, for some q's and moduli m, the period of a reduces mod m. For 
example, a = [1, 2, 3, 4] mod 2 is "the same as" [1, 2] mod 2. We say the 
period of a is preserved modulo m when this does not occur. It is frequently 
convenient to restrict consideration of k(a9 m) to the case where the period of 
a is preserved modulo m. Of course, one can get information about fc(a, m) when 
the period of a is not preserved. For example, one can consider [1, 2] instead 
of [1, 2, 3, 4] when the modulus is 2. 

The next theorem states that k(a5 m) is always a multiple of the period of 
a. This is useful information about the structure of the periods and also 
gives a trivial lower bound. 

Theorem 6: If a = [a\9 a2? . ..» cct] and the period of a is preserved mod m, 
then t \k(jn) . 

Proof: Suppose that k = k(m), then pn = pn+k for n = 1, 2, ... . So, 

anPn-l + Pn-2 E an + kPn+k-l + Pn+k~2 m o d m' 
Thus, 

anPn-l = an + kPn+k~l = an + kPn-\' 

S i m i l a r l y , 

an%-l E an + k%-l m o d m* 

Multiplying the congruences by qn and pn , respectively, and subtracting gives 

an{-l)n-1 = an{qnpn_l - p^^) = an + k(qnpn_1 - Vnqn„{) 

It follows that an = an + k mod m and, therefore, t\k(rri) . D 
The hypothesis that the period of a is preserved mod m is indeed necessary, 

since for a = [1, 2, 3, 4, 5, 6], t = 6J4 = k(a, 2) and a reduced mod 2 is "the 
same as" [1, 2]. 

It is now known that in order to determine k{m) one need only look at the 
nt - 1 and nt places in the p,q sequence, where n = 1, 2, ... . 

Corollary 7: If the period of a is preserved mod m, the period length k is of 
the form k = ct, where c is the smallest positive integer with 

Pet-i E ° ' Pet E *> qct-i E x> %t
 E °-
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Matrix Formulation 

The following theorems allow us to look at only these blocks of integers 
without going through the intermediate calculations. First, we establish the 
following lemma. 

Lemma 8: Define rn = anrn-i + r„_2 with initial conditions r-\ = a, PQ = ^» where 
a, b e 1+. Then rn = bpn + aqn. 
Proof: For n = -1 and n - 0, the relation holds trivially. Now suppose that 
T-n = bpn + aqn and r n + x = bpn + l + aqn + l . Then, 

Tn + 2 = an + 2^P«+l + a<?n+l> + bPn
 + ^n = *>P« + 2 + a?n+2- D 

We now define a matrix ^ called the fundamental matrix which depends only 
on a and that can be used to compute the blocks of convergents at the end of 
blocks of length t, 

Theorem 9: Let 

W-(q<-l ^Y, then W " . (<»*-! *«*\ 
\Pt-l Pj \Pnt-l Put! 

Proof: Consider the function Fa : Z2- -> Z2 which takes an initial condition pair 
(a, 2?) to the pair (rt-i> vt) giving the last two terms resulting from applying 
one period of recursions r3- = a^v^-\ + pj-2> 3 = x ? ••••» £> to initial condi-
tions V-i = a, TQ = Z? . In light of the lemma, Fa can be written in matrix 
form: 

Fa(a, b) = (a, fc)tf. 
On the other hand, applying n periods of the recursions is just n iterations of 
Fa and (pnt _-,, p ,) is the result of applying n periods of the recursion to 
(0, 1). Hence, 

(pn t_ 1 ? pnt) = ^ ( 0 , 1) = (0, l)Wn. 
Likewise, 

(?„t-l • ?«*> " (1> 0)f/n 

and the conclusion follows. Q 

Notice in the example below that W9 W2-, and W^ appear upside down in the 
list of convergents of a = [3, 5, 2]. 

/ 5 11\ 2 = /201 440\ 3 = / 8045 17611\ 
\16 35/5 \640 1401/5 \25616 56075/5 

ak: 

qk-
0 
1 

1 
0 

3 

3 
1 

5 

16 
5 

2 

35 
11 

3 

121 
38 

5 

640 
201 

2 

1401 
440 

3 

4843 
1521 

5 

25616 
8045 

2 

56075 
17611 

The following corollary is a direct consequence of Theorem 9 and Corollary 
7. 

Corollary 10: 

(i) If ft/n E J mod w, then fcO) |n£. 
(ii) If the period of a is preserved mod 77?, then o is the smallest integer such 

that WG E I mod 7?7 if and only if k(jri) = ct. 

Remark: If p is an odd prime, the order of the multiplicative group of matrices 
{A e Mz(Zp) |det(i4) = ±1} is 2(p + I)pip - 1) and it follows that 

fc(p)|2(p + l)p(p - D t . 
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This establishes a slightly better upper bound for k(p) than the p H observed 
earlier. Furthermore, this remark limits the factors appearing in k(p). 

Reversals and Rotations 

Given an a = [a\9 a^9 . . . , at ] , we construct other quadratic irrationals 
related to a: the reversal of a, a* = [at, at-\9 . .., a\\ and the rotation of 
by one position, a* = [at, a\9 a^* ..., at-\]< The rotation of a by j posi-
tions to the right is indicated by a*<? . The following theorems show that 
k(a, m) is not changed when a is reversed or rotated. Thus, if we know 
k(a, m), then we really know k{m) for up to 2t different quadratic irrationals. 

Theorem 11: k(a, m) = k(u*, m) = k(u*2, m) = .•• = feCa**"1, m). 

Proof: First, notice that if the period of a is not preserved mod m9 then the 
period of a*J is not preserved mod m for all j . If a = [a\9 a^* • • • > a>t ] 
degenerates into ar = [a\9 a^9 ..., ati\ mod m. That is, tr is the smallest 
positive integer so that for all j, aj = aj + t' mod m. Then for all j 5 k{aT° , /??) 
= k(a'*J , /??), but the period of a' is preserved mod m. Thus, without loss of 
generality, we will assume the period of a is preserved mod m. 

Let W be the fundamental matrix for a. let a be the smallest positive inte-
ger with Wc E I mod m, let Fa be the function as in the proof of Theorem 8 
which gives the last two terms resulting from applying one a period of 
recursions to given initial conditions, and let p*, q* denote the p,q sequence 
for oT . 

Note that a* = [at, a\9 a<i> . .., cct]. Thus, (p*, P*+0 a r i s e from apply-
ing one period of the a recursion relations to initial condition (pj, p"^) . That 
is, 

<P*> P?+l> = Fa(P5' PV = <Po> PVW 

and applying uc" periods of the a recursions gives 

( p 0 V p * t + i ) - ^ ° ( P S . P I ) - (Po> ??>""• 
Likewise for the q sequence. Thus, k(a* 9 m)\k(a, m) . Applying this fact to 
further rotations gives 

k(a, m) = k(ukt , m) \ k(a* t ~l, m)\ ... |fc(oT, 77?)|fc(a, m) 

and, hence, the required equalities must hold. • 

Theorem 12: k(a, m) = k(a* , TTZ) . 

Proof: If k = k(a, m), then, from well-known identities (see Rosen [2, p. 363]) 
of continued fractions p£/q£ = P^lp^-i a n d P̂ -i/<?/?-1 = ^k^k-l' Therefore, 

Pfc-1 = ?k E °> Pfe* = Pk E !' 
<#_! - ?,.! = 1, ?£ = Pk_! = 0, 

which implies k(a^ 9 m)\k(a9 m) . It is evident that k(a^ ,m) = /c(a, /??) since, by 
applying the process on a^, we obtain k(a, m) |/c(a*, w) . D 

Periods of Powers of Primes 

The relation between k(a9 p) and k(a9 pe) is explored next. Consider the 
periods of a = [1, 1, 1, 1, 1, 2] for several prime power moduli. 

p 
2 
3 
5 
7 

k(a, p) 
12 
18 
36 
84 

k{u, p2) 
24 
18 
36 
588 

k(a, p3) 
48 
18 
180 

4116 

k(a, p4) 
96 
54 
900 

28812 
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Notice when the exponent of p in the modulus is increased by one the period 
seems to "increase" by a factor of p or 1. Indeed, the following theorems show 
that as the exponent of p increases the period k(pe) will increase by a factor 
of p after some initial constant sequence. An exception is p = 2, which is 
slightly more complicated. 

It is interesting to note that for the analogous theorem of Wall [6] about 
the Fibonacci numbers there are no known examples with k(p) = k{p2). For the a 
given above, k(p) = k(pe) for some e > 1 does occur. Identifying when this 
occurs remains an open problem. 

We now turn to proving the above properties. Let A be a matrix with inte-
ger entries. If p e divides each element of A but p e + 1 does not divide some 
element of A , we say p e exactly divides A 3 and write pe\\A. This means that A 
can be written A = peS for some matrix S with integer entries where S contains 
an element which is not divisible by p. 

Lemma 13: Let U be a matix with integer entries, I be the identity matrix, 
and p be an odd prime number. If pe\\U - I for some e > 1, then p e + l\\Up - I. 
Moreover, for p = 2, if e > 2 and 2e\\U - X, then 2e + l\\U2 - T. 

Proof: Suppose first that p is an odd prime with pe\\U - J, so U = I + peS where 
S is a matrix with integer entries and p does not divide some entry in S. The 
binomial theorem is not true for matrices in general, but it is true when one 
of the matrices is the identity. The third and higher terms of the binomial 
expansion below have at least two factors of p e plus another factor of p coming 
from the binomial coefficient or from an additional factor of p e . Thus, for 
some matrix T9 we have 

up = (I + v
esy = £ (p-)pjesj = (o)J + (l)pes + P2e+lT° 

Thus, UP - I = pe + lS + p2e+1T. Notice that pe + l\Up - I and that if pe+2 did, 
then p would divide all the elements of 5, which contradicts the hypothesis. 
Therefore, pe + ̂ \\Up - I as required. 

Similarly, If p = 2 and 2e\\U - I', U has the same form as above and 

U2 = I + 2e + lS + 22eS2. 
Thus, 2e+l\U2 - J. Now, for e > 25 2e > e + 2 so that if 2e+2\U2 - I then l\S9 
which is not so. Thus, 2e+l\U2 - J. D 

Theorem 14: Let p be an odd prime which preserves the period of a. There is 
a positive integer e so that 

k(p) = k{p2) = ... = k{pe) and k(pe+J) = pik(p) for all J > 1. 

Moreover, for p = 2 there is an integer e > 2 such that 

k{22) = k(23) = ... = k(2e) and k(2e+j) = 2jk(2) for all j > 1. 

Also, k{2) = Zc(4) or k{2) = %fc(4). 

Proof: Let p be an odd prime and £/ be the fundamental matrix for a. Notice 
that p n preserves the period of a for all n. So, by Corollary 10, k(pe) = nt 
if and only if n is the smallest positive integer with Wn = I mod p e . Select c 
to be the smallest exponent for which W° = I mod p. Then let e be the largest 
exponent (possibly 1) for which k{p) = k(p2) = •-• = k{pe). Notice that £ must 
be finite, since for large enough e, p e will be larger than the entries in Wa 

and, hence, W° £ I mod p e . Now pe||l^ - I so that, by the lemma, p e + l\\Wpc - J. 
Thus, at = &(pe) |k(pe+1)|ptf£. So, ft(pe+1) = e£ or pot. If fe(pe + 1) = tf£, then 
pe + 1\W° - J, which is impossible since pe\\W° - J. Therefore, k(pe+l) = pk(pe) . 
Continuing inductively gives k(pe+J) = pJ'k(pe) . 
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Moreover, for p = 2? the same argument works beginning with fc(22), since 
the lemma used requires e > 2 in this case. Also, if W° = I mod 2, then for 
some matrix T, Wc = I + 2T; hence, Ĵ 2c = J mod 4 and the ratio fc(4)/fc(2) is 1 
or 2. • 

The special possibilities mentioned in the theorem for p = 2 do occur as 
indicated by the examples: 

a 

[I7~2] 
[1, 1, 2] 

[1, 2, 3] 

Hi) 

4 

6 

6 

fc(4) 

8 

12 

6 

fc(8) 

8 

24 

12 

£(16) 

16 

48 

24 

£(32) 

32 

96 

48 

where 

Bounds for Prime Periods 

It was shown in Corollary 10 that o is the smallest positive integer such 
that Wc = I mod m if k(m) = ot. To facilitate the analysis of Wc, we diagon-
alize the fundamental matrix. The eigenvalues of this matrix are 

4 = ̂ [(P* + <?t-i) + ^] a n d A2 = 2"t(Pt + ^ t - 1 ^ " ̂ » 

d = (pt + ̂ . p 2 + 4(-l)t"1. 
It is evident from the definitions of Xi and X2 that 

XXX2 = (-1)* and Xx + X2 = (pt + <?t-l)' 

These identities are used in the following lemmas and theorems* Computing the 
eigenvectors and completing the diagonalization, we find the following form for 
Wn. 

Theorem 15: Let W be the fundamental matrix for a and let ^n = (x" - X^/vd. 
Then, 

wn for n = 1, 25 .. 
Pt - 1 ^n ^n +1 <?£ -1 ^n J 

Proof: The fundamental matrix can be diagonalized by the matrix P, where 

X2 - q. t-U 

and P~ 
-1 

^ T / 5 

A2 " <7t-i -q.t 

it 
Computing Wn = PPnP 1, where P is the diagonal matrix with X]_ and X2 on the 
diagonal, we get 

V" 
<7t ̂ 

- ( A l -1>(A2 - <7t-l><*! - A2> < M * l ( * l - <7 t - l> - X 2< X 2 - <?t-l> 

This s i m p l i f i e s i n t o the r e q u i r e d m a t r i x us ing the p r o p e r t i e s of the e igen-
v a l u e s . D 
Remark: An i n t e r e s t i n g consequence of t h i s d i a g o n a l i z a t i o n i s t h a t 

Pnt-tft = 4ntPt-l f o r a l l n = 1, 2, . . . . 
Lemma 16: 

<£n_x - ( - D * [ ( p t + ^ - i ) ^ " -S?n+1] fo r n - 1, 2, . . . . 
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Proof: The eigenvalues A^ and A2 satisfy the characteristic equation of W* 
Thus, A^ - (pt + qt_l)\i + (-1)* = 0 and, likewise, for A2. Multiplying these 
equations by A^"1 and A^-1, respectively, and subtracting yields 

Solving for ££n_^ gives the conclusion. • 

Notice that J£Q and ̂  are integers and that &n+i is an integer combination 
of ££n and JS?n_i« Therefore, ££n is an integer for n - 1, 2, . .. . 

Lemma 17: If p is an odd prime and (4) is the Legendre symbol, then 

(i) jSfp E ̂ -j mod p, and 

(ii) ifp + 1 = 2"l(pt + ̂ ^ [ ( f ) + l] mod p. 

Proof: By writing out A^ and A2 in their respective binomial expansions, can-
calling the even terms, reducing modulo p, and applying Euler!s criterion, we 
get that 

(i) z? = ±a{ - AP } - 2 l _ p
l i ^ P ( ? ) < P * + ? * - i > p " ^ ' 1 ) / 2 

j odd 
i ( P U f - U / 2 i (2 ) mod p , and 

<"> *•. - T/<1 - is*i> - ̂ M" } > . + ' « - 1 > p * 1 • J ^ ( j - l ) / 2 
j < p \ 

j odd 

E 2-1 ( p t + qt-x)l(pt + qt-i)P~l + c f ( P _ 1 ) / 2 ] mod p 

= 2 _ 1 ( p t + <7*-i>[(f) + 1] ™>d P- a 
The following three corollaries are direct consequences of the previous two 
lemmas. They provide information about the entries in Wn when n = p - (̂ ). 

Corollary 18: If (§) = 1, then 

(i) J2?p_2 E (-1)*"1 mod p, 
(ii) ^p-i = 0 mod p, and 
(iii) j£?p E 1 mod p. 

Corollary 19: If (|) = 0, then 

(i) ^?
p.1E2-1(-l)t-1(pt + qt_Y) mod p, 

(ii) <gp - 0 mod p, and 
(iii) &p + l E 2"1(pt + qt_l) mod p. 

Corollary 20: If (§) = -1, then 

(i) J£p = -1 mod p, 
(ii) J^p+i = 0 mod p, and 
(iii) J*?p+2 E (-1)* mod p. 

Corollary 10 describes the relation of k{p) to o such that Wc = I and Theo-
rem 15 gives a form for Fn. These are combined to obtain divisibility proper-
ties for k(p) . These multiples of k(p) also give upper bounds on k{p). 

#, Up - l)t if (g) - 1, 
Theorem 21: If p is an odd prime, then k(p) divides \i\-pt if (-) = 0, 

(2(p + l)t if (f) = -1. 
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Proof: 

Case 1. Suppose t h a t (J-) = 1, and then apply C o r o l l a r y 18 to Wp~l: 

/ P - l 
(-D t - l JSf. p - 2 + ^ t - l ^ p -p - 1 

P t - l ^ p - 1 

' ( - l ) * - ^ - ! ) t - l 
I mod p. 

0 1. 

Therefore, k(p)\(p - 1)£ for (|) = 1. 

Case 2. Suppose that (f) = 0, and then apply Corollary 19 to Wpi 

^ ( p , + ?,„!) 

2"1(pt + 4t-i)J 
mod p. 

Thus, W2p E 4"1(p, + g t_ x ) 2 X, but since (pt + g t _ x ) 2 = d + 4(-l) t = 4(-l)t mod p 
we have W2p E (-1)*!". Therefore, j/*p = I and /c(p)|4pi in this case. 

Case 3. Suppose that (,|) = - 1 , and then apply Corollary 20 to W?+l: 

Thus, J/' 

;P+1 _ 

r2(P+l) = 

• ( - l ) * " 1 ^ + ^ . 1 J 2 f p + 1 ^ t ^ p + 1 

p* - 1 *^V+1 •^p + 2 ?t - 1 ^V + 1 • 

•<-D* 0 

o (-Uf 
mod p. 

I and /c(p) 12(p + 1)£ in this case, D 

The proof of the previous theorem allows tightening of the bound when the 
period of a is even. ((p _ 1 ) t if (|) = ls 

Theorem 22: If t is even, then k{p) divides llpt if (§) = 0, 
( ( P + D t if ( i ) = - i . 

The bounds given by Theorems 21 and 22 are met with some frequency. For exam-
ple , considering the primes less than 1000 for the modulus, the bounds are met 
about 66 percent of the time for a 
for a 

[2, 1, 4, 3, 5] and 35 percent of the time 
[4, 5, 1, 3, 2, 5], 

Questions 

We leave the reader with some questions. First, when does k{p) = k(pe)1 
Wall stated that, for a = [T], no examples for k(p) = k(p2) occur for p < 10,000 
and we have checked this for p < 100,000* Does k(p) = kip2-) ever happen in 
that case? Given a = [a^, a^^ . .., a t], can bounds be given on the p!s for 
which k(p) = /c(p2)? Does t play a role in such bounds? Can anything be said 
for k(p) = k(pe) for e = 35 4, ... ? 

Wall gives considerable discussion of the period length of the sequence of 
Pn

fs defined in Lemma 8 for the case in which an ~ 1 for all n. There, the 
period is often independent of the initial conditions a and b. To what extent 
does that theory work for periodic sequences of an's? 

The next question concerns the upper bounds for k(p) given by Theorems 21 
and 22. We would like to know when k(p) equals its upper bound. We conjecture 
that k(p) is the upper bound with some frequency; perhaps two-thirds of the 
k(p) equal their upper bound when t is a prime. Can the bounds be improved 
when t is composite? 
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Addendum on Lower Bounds 

Theorem 6 gives a trivial lower bound on k(p). It seems reasonable to 
expect k{rn) > c log(m) for some constant c depending on a. Are such bounds 
possible? The referee offered the following solution. Let a\^ a^ ...5 an be 
the complete list of the partial quotients for a given quadratic irrational a. 
Set A = max{ai, ...5 an] + 1. Then 

pt < (A - l)pt_1 + pt_2 < Apt_x for all t > 2 

and p-j_ = ax < A so that 

p < At for all t > 1. 

For At < m < At + l , this means that k(m) > t . It follows that 

, , x log m 
kirn) > — 1 for all w > 1. 

log A 
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