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A strictly increasing sequence of positive integers a-,, a2? ••• is defined 
to be s-additive [1] if, for n > 2s, an is the least integer greater than an-\ 
having precisely s representations a^ + a.j = an, i < j . The first 2s terms of 
an s-additive sequence are called the base of the sequence. An s-additive 
sequence, for a given base, may" be either finite or infinite; the sequence is 
assumed to be maximal in the sense that the total number of terms is as large 
as possible. Consider, for example, the case in which s = 1, a\ - 1, and 
a,2 ~ 2. The next fifteen terms of the sequence are 3, 4, 6, 8, 11, 13, 16, 18, 
26, 28, 36, 38, 47, 48, 53. The sequence is infinite (as is any 1-additive 
sequence) since an _ 3 + an _ ]_ is an integer greater than an_i with no other 
representation di + CLJ and, hence, there exists a least such integer. It is 
the archetypal s-additive sequence, and was first studied by Stanislaw Ulam 
[2], An example of a 2-additive sequence is 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 
17, 19, 29, 31, 33, 43, 44, 47, 51, . .., which also appears to be infinite 
(though a proof of this fact is not known) . Not all 2-additive sequences are 
infinite, as illustrated by the sequence 1, 3, 5, 7, 8. 

For s ^ 1, Raymond Queneau [1] showed that an s-additive sequence has at 
least 2s + 2 terms if and only if there exist positive integers u and V such 
that the 2s numbers in the base (up to ordering) are u, 2u, ..., su, v9 u + v9 
2u + v, . .., (s - l)u + v. This is called Condition u,v» We denote an s~ 
additive sequence satisfying Condition u, V by the ordered triple (s, u, v). 
Note that the correspondence between such sequences and ordered triples is not 
one-to-one, since (s, 1, s + 1) = (s, 2, 1). Queneau undertook a detailed 
examination of various properties of s-additive sequences, including conditions 
for sequences to be infinite and conditions for sequences to be regular (in a 
sense to be defined shortly). Some of the conjectures in [1] are consistent 
with conjectures presented here; some others are false due to several unfortu-
nate errors in Queneau5s computations. 

We examine first conditions for s-additive sequences to be infinite. 

Conjecture 1: A 2-additive sequence is infinite if and only if Condition u, V 
is met. 

For s > 3, Condition u,V is necessary but not sufficient for infinitude, as 
evidenced by the finite 4-additive sequence (4, 1, 5) = 1 (1) 10, 12 (2) 20, 23 
(2) 31, 36, 38, 47, 48, 49, 51, 53, 60, 80, 85. In order to state Conjectures 
2 through 4, we assume that Condition usV is satisfied and that, without loss 
of generality, u and V are relatively prime. These two assumptions hold 
throughout the remainder of this paper. 

Conjecture 2: An s-additive sequence, when 3 < s < 6, is infinite if and only 
if 

(a) u = 1 and v is as in Table 1, 
(b) u = 2 and V is as in Table 2, or 
(c) u > 3. 

Conjecture 3: An s-additive sequence, when s is even and 8 < s < 20, is infi-
nite if and only if 

(a) u = 2 and v is as in Table 3, or 
(b) u > 3. 
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Table 1: Conditions associated with Conjecture 2(a) 
Condi t ions on V 

3 
4 
5 
6 

v > 3 
5 < V * 8, 12, 13, 
z; = 6, 9, 13, 15 
y = 8 

17, 22 

Table 2: Conditions associated with Conjecture 2(b) 
£ Conditions on V 

3 y = 1, 5 or =3 mod 4 
4 z; = 3, 7, 9 mod 10 
5 V = 1 or E9 mod 12 
6 y E 3, 5, 7, 9, 11 mod 14 

Table 3: Conditions associated with Conjecture 3(a) 

s Condi t ions on V 

8 v = 3 , 1 1 , 2 1 , 25 , 29, 39, 57, 6 1 , 65 , 75, 83 , 93 , 97, 101, 111, 119, 129, 133, 
137, 147 or 151 < V = 3, 7, 11 mod 18 

10 v = 19, 23, 45, 51, 67, 89, 95, 107 or 111 < v = 1, 7, 19 mod 22 
12 z; = 47, 143, 169, 177, 183, 235, 261, 307, 313, 333, 339, 365, 391 or 

411 < v E 1, 21 mod 26 
14 v = 189, 249, 279, 309, 339, 369, 375, 399, 429, 459, 489, 519, 525, ..., 939 

or 945 < v E 9, 15 mod 30 
16 v = 187, 323, 663, 731, 833, 893, 935, 969, 995, 1003, 1029, 1037, 1063, ..., 

1649 or 1675 < v = 9, 17 mod 34 
18 v = 417, 645, 759, 873, 979, 987, 1101, 1215, 1329, 1443, 1519, 1557, . .., 

3305 or 3343 < v = 37 mod 38 
20 v = 439, 1333, 1343, 1543, 1573, 1615, 1627, 1637, 1657, 1699, 1741, 1783, 

1867, 1889, . . ., 4429 or 4451 < v = 19, 41 mod 42 

Conjecture 4: An s-additive sequence, when s is odd and s ^ 7, is infinite if 
and only if ii > 3. 

The sequence (24, 2, 1523) appears to be infinite, whereas (22, 2, v) is 
never infinite. Proof that certain sequences are finite is not difficult; for 
example, (3, 2, v) has (Jv + 53)/4 terms (a, = 10z; + 10) when 5 < V (7v + 53)M 
mod 4. However, no s-additive sequence, s > 1 and u < 2, has been proven to be 
infinite. Note that the example involving (3, 2, v) shows that arbitrarily 
long finite sequences exist. Long sequences are computationally unwieldy since 
all terms a-., . .., ^n„i must be considered when determining an. Thus, the com-
puter evidence leading to Conjectures 1 through 4 is necessarily limited. 

We turn now to regularity issues. An infinite s-additive sequence is regu-
lar if successive differences an+i - an are eventually periodic; i.e., there is 
a positive integer N such that % + n + i ~ aN+n = an+l " an f ° r a H sufficiently 
large n. (The smallest such N is called the period.) An equivalent condition 
involves arithmetic multiprogressions [1] which are infinite sequences of the 
form 

1 9 2. 
2b + o 

where 0 < 0\ 
1* 

< c2 

2Z? + c 

b + Cj, Z? + c2 

, . . ., 22? + CT, , 

Z> + 

< ak < b + cj. If some arithmetic multiprogression, after 
at most finitely many deletions of certain terms or insertions of additional 
terms, is equal to the s-additive sequence (s, u, f),then (s, u, v) is regular. 
We write this condition more compactly as 
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(s, u5 v) ~ bn + [ol9 cz, ..., ck] n = 0, 1, 2, ..., 
in which the symbol ~ is to be interpreted as eventual equality. If greater 
precision is required, we write 

(s, u, v) = bn + [cl, c2, ..., ok ] © dx, ..., dp © ex, ..., eq, 

where c^, . .., dp and e\, . .., £q are, respectively, the inserted and deleted 
terms on the right-hand side that make equality hold. 

The nature of Conjectures 2 through 4 might lead one to suspect that some-
thing is special about the case u > 3. This is true, in fact, as proved by 
Queneau in [1]. 

Theorem 1: If s > 1 and u > 3, then (s, u, v) is regular and 

(s, u, i?) = nu + [y] © u, 2u, . .., sw, (25 - l)u + 2z;. 

A consequence of this result and Conjecture 4 is that there do not exist 
infinite irregular sequences when s is odd and s > 7. No analogous general 
formulas appear to hold for the remaining cases s = I or u < 2. A limited 
computer search for regular 1-additive sequences has uncovered many examples, 
some of which are exhibited in Table 4. (The first three of these were found 
by Queneau [1].) We conjecture that (1, us v) is regular for a wide variety of 
u and V. Though a proof is not known, a sensible argument might be based on 
Theorem 2 and (deceptively simple) Conjecture 5. Periods for (1, 2, v) and for 
(1, 4, V), as fascinatingly intricate functions of odd V > 3, are listed in 
Table 5. [Some cases have either incalculably long periods or long initial 
stretches before periodicity begins. For example, the period for (1, 2, v), 
where 35 < v < 41 is odd, probably exce. eds 109.] 

Table 4: Regular 1-additive sequences 

(1, 2, 5) = 126n + [5 (2) 15, a9 = 19, a10 = 23, ..., a3k = 119] © 2, 12 
(1, 2, 7) = 126n + [7 (2) 21, a n = 25, a12 = 29, ..., a28 = 117] © 2, 16 

a ^ = 1767] © 2, 20 
, a16 3 0 = 6497] © 2, 24 
., a5908 = 23607] © 2, 28 
a82 = 493] © 2, 32 

(1, 2, 9) = 1778n + [9 (2) 27, a1 3 = 31, a14 = 35, . 
(1, 2, 11) = 6510n + [11 (2) 33, a 1 5 = 37, a16 = 41, 
(1, 2, 13) = 23622n + [13 (2) 39, a 1 7 = 43, a18 = 47, 
(1, 2, 15) = 510n + [15 (2) 45, a1 9 = 49, a20 = 53, . 
(1, 2, 17) = 507842n + [17 (2) 51, a21 = 55, a22 = 59, ..., 

a126962 = 507823] © 2, 36 
(1,4,5) = 192n + [5 (4) 17, 19, 21, a1 0 = 25, axl = 27, ..., a35 = 173] 

© 4, 14, 24 
(1, 4, 9) = 640n + [9 (4) 29, 31, 33, 37 (2) 41, a 1 5 = 45, a16 = 47, ..., 

a91 = 609] © 4, 22, 40 
(1, 4, 11) = 1318n + [11 (4) 27, 37, 39, 43 (2) 47, 51 (2) 57, 61, 67, 69, 75, 77 

83, 85, 89, 91, 99, 105, a29 = 111, a30 = 123, ..., a2i+9 = 1309] 
© 4, 26, 31, 35, 48 0 57, 105 

(1, 4, 13) = 896n + [13 (4) 41, 43, 45, 49 (2) 53, a 1 7 = 57, a18 = 59, ..., 
aio7 = 853] © 4, 30, 56 

(1, 4, 17) = 2304n + [17 (4) 53, 55, 57, 61 (2) 65, 69 (2) 73, a 2 2 = 77, 
a23 =79, ..., a251 = 2249] © 4, 38, 72 

(1, 4, 19) - 2560n + [a25 5 2 = 14753, a25 5 3 = 14761, ..., a2 9 0 3 = 17275] 
(1,4,21) = 2816n + [21 (4) 65, 67, 69, 73 (2) 77, 81 (2) 85, alh = 89, 

a25 =91, ..., a28 3 = 2749] © 4, 46, 88 
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Table 5: Periods for ( 1 , uv v ) , u = 2 and 4 
v u = 2 u = 4 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 

32 
26 
444 
1628 
5906 
80 

126960 
380882 
2097152 
1047588 
148814 

8951040 
5406720 

242 
127842440 

-
_ 
-
-

32 
-
88 
246 
104 
_ 
248 
352 
280 
5173 
304 

10270 
320 
-
712 
826 
776 

108966 
824 

Theorem 2: If a 1-additive sequence has only finitely many even terms, then 
the sequence is regular. 

Proof; Let e denote the number of even terms in the 1-additive sequence a\* di<> 
a^s . . . . Let Xi < X2 < • • • < xe be the even terms and let y, = xyj2 f° r each 
k, where 1 < k < e. Given an integer n > ye , define 

K the number of representations a^ + a* In + 1, i < j. 
Observe that a^ + a.j = 2n + 1 only if either a^ or aj is equal to some x^ (since 
a sum of two integers is odd if and only if one of the integers is odd and the 
other is even). This observation gives rise to the following recursive 
formula: 

K E «(*>*-
k= 1 

y*. i) 

where 6(0) = 1 and 6(r) = 0 for r * 0. The summation simply counts the number 
of times (out of e) that 2n + 1 is a term in a^5 #23 Define nows 
for each n > xe9 a vector of ye components 

(bn- ^n-ye + l bn-ye+2 K-i)1 • 
Regularity of the 1-additive sequence a1? a^ ... is clearly equivalent to even-
tual periodicity of the vector sequence 3Xe» $xe+ls 8° °  • ^he components of 3̂  
obviously do not exceed e. Since the number of vectors of length ye contain-
ing 0, 1, 1 or g is {e + 1) ye some $n must recur, which, in turn, 
brings about periodicity by the recursive formula. This completes the proof. 

Recall that u and v are assumed to be relatively prime. Assume, moreover, 
that u < V. 

Conjecture 5: 
(1, 1, v) has infinitely many even terms. 
(1, 2, v) has two even terms (specifically a.\ ~ 2 and ct(V + 7)/2 = 2i>+2) when 

V > 3; it has infinitely many even terms when v = 3. 
(1, 3, v) has infinitely many even terms. 
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(1, 4, V) has four even terms when v = 2k - 1 for some k = 3, 4, 5, ...; 
otherwise, it has three even terms. 

(1, 55 V) has thirteen even terms when v = 6; 
otherwise, it has infinitely many even terms. 

(1, u9 V), for even u > 6, has 2 + u/2 even terms. 
(1, u, v), for odd u > 7, has 2 + y/2 even terms when v is even; 

otherwise, it has infinitely many even terms. 

There is no reason for even terms to be small; for example, (1, 4, 255) has 
a8750 = 260606-

Other interesting trends exist in the distribution of successive differences 
an+i - an for these sequences. Let us focus on (1, 2, v), V > 3, for definite-
ness. The successive differences are always even beyond a certain point. For 
most of a period, the successive differences remain relatively small. As the 
end of the period draws near, the successive differences seem to explode to a 
maximum value (= 2v + 2), which concludes the period and a new period begins. 
In contrast, the sequence (1, 2, 3) appears to possess unbounded successive 
differences. This seems to occur as well for the sequence (s, 1, s + 1), for 
each s = 1, 2, 3, and 5; e.g., when s = 2, a^3Qi+- a^^Q3 = 174886-174579 = 307. 
Many questions arise. Is the converse of Theorem 2 true? Do there exist regu-
lar s-additive sequences for s > 1 and u < 2? Is it possible for successive 
differences of an infinite irregular s-additive sequence to be bounded9. 

Queneau also introduces several generalizations of s-additivity, of which 
we discuss one. (Replacing addition by multiplication in the definition of s-
additivity defines s-multiplicativity. This has not been studied. Nor has 
substituting the condition i < j by i < j.) A strictly increasing sequence of 
positive integers a^, di* ••• is defined to be (s, t)-additive with base B if B 
consists of the first m terms a\, a^* •••> am for some positive integer m and 
if, for n > m, an is the least integer greater than an-\ having precisely s 
representations of the form 

cLiY + ai2 + ••• + ciit = an, iY < iz < -•• < i t . 
Note that an s-additive sequence is the same as an (s, 2)-additive sequence with 
m=2s. Note also that, while m > 2s is necessary for (s, 2)-additivity and m > t 
is necessary for (1, t)-additivity, m = 5 is possible in conjunction with (2, 3)-
additivity. Lacking a suitable analogue of Condition u, V for s-additivity, we 
write an (s, t)-additive sequence as (s, t% a\ , ..., am) . For example, 

(2,3;1,2,3,4,5) = 1(1)5, 8(1)11, 25, 28, 29, 49, 66, 67, 69, 89, 92, 110, 111, ... 

which appears to be infinite. As previously, any (1, t)-additive sequence, for 
t > 2, is infinite, while extension of the proof to (s, t)-additive sequences, 
for s > 1, does not seem possible. We conclude with several more arithmetic 
multiprogression formulas obtained by limited computer search for regular 
(1, 3)-additive sequences (see Table 6). The first of these was found by Peter 
N. Muller and also appears in [3]. 

Table 6: Regular (1, 3)-additive sequences 

(1, 3; 1, 2, 3) ~ 25n + [80, 82, 104] 
(1, 3; 1, 2, 9) ~ 572n + [581 (1) 590, 645 (1) 653, 708 (1) 717, 772 (1) 781, 

836 (1) 844, 899 (1) 908, 963 (1) 972, 1027 (1) 1035, 1090 (1) 1098] 
(1, 3; 1, 3, 4) ~ 219n + [411, 412, 444, 446, 481, 482, 517, 521, 554, 555, 591, 626] 
(1, 3; 1, 3, 5) ~ 82n + [87, 89, 115, 117, 141, 143] 
(1, 3; 1, 3, 6) ~ 51n + [164 (1) 167, 211 (1) 213] 
(1, 3; 1, 3, 7) ~ 20n + [23] 
(1, 3; 2, 3, 4) ~ 148n + [157, 159, 160, 203, 204, 206 (1) 208, 253 (1) 255, 

258, 302] 
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Postscript 

Recent computations show that 

(1, 4, 7) ~ 11301098n + [a13671i+99 = 80188457, ..., a15599i+57 = 91489549] 
and 

(1, 5, 6) ~ 1720n + [a156 3 0 3 = 1579049, ..., a1 5 6 5 1 0 = 1580767]; 

thus, (1, 4, 7) and (1, 5, 6) have periods 1927959 and 208, respectively. Fur-
ther results on the regularity of certain 1-additive sequences will appear in a 
forthcoming paper. 
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