Since \(AD = CD = BC \) and \(AB = AC \), it follows immediately that
\[
2 \cos \frac{\angle A}{2} = \frac{AC}{CD} = \frac{AB}{BC}.
\]
The second result comes from the fact that
\[
\angle B = \angle BDC = \angle A + \angle DCA = 2 \angle A
\]
and hence
\[
\angle A = 36^\circ \quad \text{and} \quad 2 \cos A = \left(1 + \sqrt{5}\right)/2.
\]

(See N. N. Vorobyov: The Fibonacci Numbers (New York, 1961) p. 56.)

Continued from page 234.

ASSOCIATION PUBLISHES BOOKLET

Brother U. Alfred has just completed a new booklet entitled: Introduction to Fibonacci Discovery. This booklet for teachers, researchers, and bright students can be secured for $1.50 each or 4 copies for $5.00 from Brother U. Alfred, St. Mary's College, Calif.