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1. INTRODUCTION
Professor Charles A. Halijakhas called my attention to the fol-

lowing interesting variant of Pascal's triangle [7]

(1.1) 11 4 3 3 1

1 1 8 7 21 15 20 10 5 1

The law for formationis evident. One alternately adds together
two elements or brings down a single element in order to obtain a new
element in the nextrow. It appears that the elements turn out to be
binomial coefficients. More interestingly, it appears that the ele-
ments in any row add to give a Fibonacci number: 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, etc.

The object of the present note is to verify these observations and

to develop some other relations suggested by the array of numbers.

2. RECURRENCE RELATIONS

We may symbolize the array (1.1) as follows:

0
AO
1 1
AO A
2 2 2
AO A1 A2

etc.
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If we let A?, j=0,1,2,...,n, designate an arbitrary element
of the array then we may use the defining recurrence relation (law of
formation) to give an inductive definition of the array (1.1). Indeed

we may say that the conditions

n+l n
(2.1) Aokl T Aok
n+l n n
(2.2) Ajl = AN AL
(2.3) A?:O,j>norj<0,
(2. 4) AD=1, n=0,1,2,... , Ai:l,

are sufficient to define the array (l.1). We may combine (2.1) and
(2.2) into a single recurrence relation
n+l n 1+ (-1)

2.5 AT = AT 4 AT
(2.5) N j-1 2 j

if we desire.

It is not difficult to conjecture (and prove by induction) that

-k
(2. 6) Arzlk =<n ,
k

n-1-k
(2.7) AL = )
2k+1 N

and, again, these may be expressed in the single formula

(2. 8) Al = " —[%UH)J

J 1.
[20)
where |x] would mean the integral part of x (the ''greatest integer

in x'").

3. FIBONACCI NUMBERS
The Fibonacci numbers, Fn’ may be defined by the conditions

F,.=0, F, =1,and F
n

0 = Fn+Fn- 1’ Explicitly it is easy to show that

1 +1
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/2]
<“ _ k) R S

(3.1) F 4 3
1
n K= 0 k 21r1+1 5

and this well-known formula provides the clue to our next results.

We have

Theorem 1. For the array (1.1) we have
n o S
(3.2) 2 Af=F ., . n20
i=0

Proof.

n /2] [(n-1)/2]

s A=z sy Al 4 s AR

iz o0 k=0 2k k= 2k+1

as desired to show.
Next we may establish

Theorem 2. For the array (1.1) we have

(3. 3)

1 T~

-1)) A -

(-1) Aj Fn—l
This would also be true for n = 0 if we extend the Fibonaccisequence
backwards as is usually done. As for the'proof, the same steps as

used for Theorem 1 give us at once Fn - Fn or F_ as claimed.

+1 -1

4, A GENERAL POLYNOMIAL
We now define the polynomial An(x) by

n .
(4.1) A= ¥ AT
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In view of (2.6) and (2.7) we have
[n/2] -k [(n-1)/2] /n-1-k

(4.2) A )= 3 < > NS S ( ) A
k=0 k k=0 k

The polynomial An(x) satisfies a simple recurrence relation

which we may find as follows. By means of (2.5) we have

n+1 ntl n+1 n 1 n+1 n 1 n+1l .
s AT Y= 3 Al X +s 3 Al 5= (1Al
j=1 Y j=1 7 j=1 j=1

or

n+1 . n . n n
s Ao s an It +% s, A?XJ+%. 3 Al (-x),
j=o0 j=0 7 j=0 j=o0

or therefore

(4. 3) 2 A 4(x) = @x + DA_(x) + A_(-x).

It would be possible to set down a closed expression for An(x)

by means of the summation formula

[1’1/2] -k k ntl 1
(4. 4) xt 2 -, x=_"" ,
kg 0 ( k ) (-1 +u)” (1+u)2

but this does not seem to simplify very nicely. It would be of interest
to evaluate An(x) for values of x other than x=1 and x = -1, how-

ever., We remark that (4.4) may be written in the alternative form

(4.5) [n}/LZ] n -k 2n—Zka:unﬂ-vnJrl (=1 +Vx +1 ,
o\ .y vel-VETl

5. LUCAS NUMBER VARIANT OF PASCAL'S TRIANGLE
Using the same law of formation as we imposed to generate rows

in (1.1) we may form the array
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1

1 1 9 8 27 20 30 16 9 2.

where the only difference is that we use a different initial value in the
second spot on the second row., Let us symbolize the array by using
the notation JESJr.l inthe same way we discussed AT, We first observe
thatthe rows add to give the Lucas numbers: 1, 3, 4, 7, 11, 18, 29,
47, 76, 123, 199, etc. In other words, we have, evidently, the two

relations
n
(5.2) 3 = L ,
=0 J n+l
and
n i n
5.3 -1y B, = L s
( ) ; E 0 (-1) 3 n-2

Explicitly, we have

[n/2]
p2

(5. 4) I =
T ok=o0

n- k

The array (5.1) may be specified by the conditions
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(5.5) Br?_llt}l-l - ng’

(5. 6) Blzlltl = By1 + By

(5.7) B?:O,j>n or j <0,
(5. 8) B®=1,n=0,1,2,... , Bl =2,

We may combine (5.5) and (5. 6) by writing

1y
(5.9) phtl _ gn +l_i(_1_)_BJI_1,
2

and we conjecture on the basis of (5.4) and the above that

n -k
n _ n
(5.10) BZk————n_k< k>,
and
(5.11) gt __n-1 nobok sloo
: 2kl T n -1 - K N » By :

The two relations could be combined into a single expression, however,
the result is not as simple as was the case with (2. 8).
Associated with the Lucas variant of Pascal's triangle we may

consider the polynomial

n .
= o
(5.12) Bn(x) jzo Bj x” .

1

In view of the recurrence (5.9), just as in the case of (2.5), we may

show that the companion relation to (4. 3) is

(5.13) ZBn+1(X) = (2x + I)Bn(x) + Bn(-x) .

The formula

(5.14) [nz{ZJ = (n ) k) g2k k_pu t v,
= k
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where

u=1l+vx+1l, v=1-Vx+1,

could be used to give a closed form for (5.12).

6. GENERALIZATION
A general array suggested by the two cases we have discussed

may be set down as follows:

a
a b
a a b
a a atb b
(6.1) a a 2a+b a+b b
a a 3a+tb 2a+tb atz2b b
a  a  4atb 3atb  3a+3b a+2b b
a a 5a+b 4a+b 6a+4b 3a+3b a+3b b
a a 6a+b 5a+b 10a+5b 6a+4b 4a+6b a+3b b

We may define the array by the following conditions:

0o_ 1 _ 1
(6.2) Cy=0,=2 Cj=h
(6. 3) C?:O,ﬁ j>mnorj<o,
ntl n 1+(—1)j n > S
(6. 4) Cj —CJ._1+————2—— Cj’ n=21, j=2 0.

For the recurrence (6.4) we have imposed the condition that n > 1.

We do this for the following reason. Choose Cg = a. Then, by (6. 4),

we have C(l) = C(_)1 + Cg = Cg provided we impose (6.3). But then we
have C% = Cg +0 =a, not b. Toavoidthis difficulty we may define
Ci = b. For the next row we have then
2 1 1 _ _
CO—C_1+CO—O+a—a,
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Thus a simple condition to attach to the recurrence is that n21.
Another waytoproceed would be to define Cg = b and Cé = a. Every-
thing would be the same exceptthe topmost element, and the recurrence
would hold in all cases. However, then the niceness of the array(5.1)
would suffer by having Bg = 2 which would not fit so well with the
Lucas numbers. There is a certain arbitrariness in combining the
various properties which seem to be of interest. Because of this, the
reader may find it instructive to examine other possible definitions.

From our definition it is easy to show that the row-sums are

given by
n

(6.5) S(a,b)= ¥ Ccl=aF +bF , n=>0

: n’ . < J n+l n’ -

j=0

interms ofthe Fibonacci numbers. Thus we find S (1,1) = Fn+l + Fn
= Fn+2 as before. Also, Sn(l,Z) = Fn+1 + ZFn e Fn+l + Fn+Fn
:Fn+2+Fn:Ln+l as before. (Itis easily provedthat Ln:Fn+l+Fn—1')

The arbitrariness involved inthe first two rows, however, shows

up again whenwe consider the alternating row-sums. We find these are

Tn(a, b) =

nHMB

(-1)Jc§‘:b, a-b, b, a, a+h, 2a+Db, 3a+2b,

i=0

and, except for the first such sum, we can show that

(6. 6) T (a,b) =

[T 3o W]

(-1)] c’jfl =aF__, +bF_,, n21.
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Remark: The usual definition of Fibonacci numbers with negative

index is

so that the doubly infinite sequence of Fibondacci numbers is
.., 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5,

In view of this, the formula (6.7) breaks down for n =0 as it then

gives the value -a + 2b instead of the value b. However, for n=2 1

agreementis found. In particular, when a =1 = b, we have Tn(l, 1)

= F + F = F as in (3.3) A similar result holds for the
n-2 n-3 n-1

Lucas number variant (5.1).

7. FURTHER RELATIONS FOR THE POLYNOMIAL An(x)

Bymeans of relation (4. 2) we may show readily that An(x) satis-

fies the second-order recurrence relation

(7.1) A L (x)=A

2
2 + x An(x) .

n+1 )

In fact we have

»
>
%
1
= ™M

Using the fact that
p-k p-ky _
P+ 270

it then readily follows that
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+2 - R
2 _ n 2k
An-l-l (x) +x An(X) = s ( . ) x"T+ P
< gnt2 << ntl
0Sk S5 0SkE3S

- An+2(x)'

Associated with An(x) we may next introduce a related poly-

nomial Kn(x) defined by

_.n 1, n_n-j
(7.2) Kn(x) =x An(;(—) = Aj x

N MB

Relation (7.1) then becomes
(7. 3) Kn+2(x) = xKnH(x) + Kn(x), with Ko(x) =1, Kl(x) =x+1.

This recurrence relation is of the same form as one studied by Cata-
lan [4] . This is mentioned by Byrd [3].
It may be of interest to indicate how the Q-matrix technique {1] may

be applied to a study of Kn(x). Define

x 1
(7.4) Q=< > .
10

Then

(7.5) Q" = B 09 , n2>1,

£ £ (%)
where the f's are Fibonacci polynomials defined by
(7.6) £n+2(x) = an+l(X) + fn(x), fo(x) =0, fl(x) = 1.
It is easily shown that

(7.7) Ky(x) = £ () +£(0)

From (7.7) we have next

j+l _ jt+l h]
(-1) KJ.(X) = =17 ) - (-1) fj(X)
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whence

n -
(7.8) TR = ()T )

i=0 !
sothat the Fibonaccipolynomials fn(x) may be expressed in terms of
the K or A polynomials very easily,
We next observe that (7.5) and (7. 7) yield
K (x) K

n n-1 n n-

(7.9) Q

From this resultit is possible to evaluate the determinant of the K's

as follows. To begin with, IQn] = ’an = (—l)n. Then we find that
K_(x) K (x) .
n n-1 :’Qn+Qn—l’:lQn-l(Q+I)l, I:(é ?) ,
Koo (x) K- Z(X)
- lQn—1] . IQ""II
- (—l)n—lx

We may state the result more elegantly in the form

Knn‘-l (=) Kn<x)

(7.10) =(-1)yx
K () K &)
This may be compared with the relation
Fn+a Fn-!—a+b
(7.11) (- FF
F1‘1 Fn-I—b a’b

for the ordinary Fibonacci numbers (FO =0, Fl =1, Fn+2 1

which was posed as a problem inthe American Mathematical Monthly[8].

=F + F )

n n
In particular, this raises the question about a similar generalization
of the determinant (7.10). Indeed, we shall now prove by induction

that
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Kn+a(x) Kn+a+b(x) _ (_l)n Ka Ka+b - (—Un(K K -K

).
a b a+b
Kn(x) Kn+b(x) KO Kb

(7.12)

This will be true for all integers if we define

(7.13) K__(x) =K (-x)

as is suggested by recurrence relation (7. 3).
As for the proof of (7.12), we may first show that (as is obvious

for n = 0)

(7.14) K . K K K

_ n
n+l n+b * n ntb+l ~ (-1) (KlK KoK

b~ 0 1+b) ’

where, for brevity, we omit writing x which will remain unchanged.

Now, in fact, by means of (7. 3) we have

n —_
(-1) [Kn+lKn+b ) KnKn+b+1]“ (-1)

B n
=(-1) Kn+l Kn+b+2 -

n x )- K

Kn+1 (K nKn+b+1]

ntbi2 T Fniptl

K TR b ]

. ondl
=07 KK - KonKaspiz)

sothatthe expression is unchanged when n is replaced by n+ 1. By
induction, then, relation (7.14) follows.

Inthe same way, we could show that (7.12) holds for a = 2, that
is,
(7.15) K

= (-l)n(KZK K. K

n+25nb T Kafainia b~ 0 2+b)

We may complete the argument by an induction on a. Suppose

that (7.12) holds for fixed n,b anduptoacertainvalue of a(2l). Then

K K - K K

n
n+a n+b n nta+b ~ (-1) KaKb - K

OKa+b
and

Kn+a—lKn+b - KnKn-i-a.-1+b - (_l)n Ka—le - KOKa--l-Fb ’

and if we multiply the first of these by x, add to the second, and re-

call the basic recurrence relation (7. 3), we obtain prccisely
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K K "K K, - K, K

n+a+l n+b ~ KnKn+a+1 +b (-1) a+l™ b atl+b 7

sothat the induction goes through. This proof is nothing more than a
variant ofa similar proof for Problem E 1396, relation (7.11) above,
suggested by Mr. John H. Biggs who was then a graduate student at
'~ West Virginia University. Clearlythe same technique may be used in
other cases wherea recurrence relation of a suitable sort is presup-
posed. Thus (7.12) also holds for fn(x) in place of Kn(x).

We should like to mention still another interesting relation in-
volving the polynomial Kn(x). The reader may find it worthwhile to
carry out an inductive proof that

a

(7.16) Kn(x) + (-1)"K (x) + XKn-I—a(X) =0

nt+2a

When a =1 this becomes again (7.3). It is possible to base a proof
of (7.12) on this relation. The idea traces back as far as George
Boole [2], and may have further unsuspected possibilities. Under
miscellaneous propositions, in Chapter XII, pp. 229-231, Boole uses
aninvariance technique which may be of interest. By (7.16) we have

(omitting x for brevity)

a = -
Kn (1) Kn+2a - XKn+a

This relation being true for all integers n,a, we next replace n by
n + b, and we have, for arbitrary n,a, b,

+(-1)*K xK

K nt+2a+b s n+a+tb

n+b

Here, -x playsthe part of the number p in Boole's argument. We
may eliminate -x from the last two relations by multiplying the for-

mer by K the latter by Kn , and equating the resulting left-

nta+tb’
hand members. This yields

+a

(-1)*K @ K_K

K K n+aKn+2a+b = (-1) Kn+2aKn+a+b * n nta+b

nt+a nt+b *
Multiplying through by (—1)n we have, transposing terms,

nta
)

n = - -
(7.17) (-1) [KnJraKn-Fb_ KnKn+a+b]_—( 1 I:Kn+2aKn+a—b Kn+aKn+2a+b].
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Call the left-hand member of this F(n). Then the crux of Boole's
argument would be that (7.17) asserts that F(n) = F(n + a). This be-
ing so for a perfectly arbitrary integer a, as we supposed to begin
with, then it follows that F(n) is invariant with respect to n. Hence

we have only to set n = 0, and we find that

F(n) = F(0) = K K - KJK_,,

and this of course is precisely what we claimed in relation (7.12).

The beauty of Boole's method is that one may oftentimes begin
with a non-linear recurrence relation (difference equation), such as
(7.12) is indeed, and relate this back to a linear relation, as (7.16)
actuallyis. The methodis especiallyusefulinthe study of determinants
of polynomials which satisfy suitable recurrence relations.

The relations (7.11) and (7.12) may be called Turdn relations,
and the reader is referred to [5, 6] for pertinent journal references
and some variations. A detailed bibliography on the Turdn expressions
(and Turan inequalities) would contain over 110 references to journal

articles and books accordingtothe author's current file on the literature.
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