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1. INTRODUCTION 

In number theory one encounters such numbers as 

. 105263157894736842 

(the period of 2 / l 9) and . 102564 (the period of 4/39) one of whose very-
in te res t ing p rope r t i e s will be t r ea ted h e r e . If the t e rmina l digit be 
removed from the end of the number and placed at the beginning, the 
r e su l t is the product of that digit and the or iginal number . 

Examples : 

.10526315789473684,2 .102564 
and 

x 2 x 4 
,2_1052631578947 3684 .410256 

The purpose of this paper will be to invest igate the exis tence and 
c h a r a c t e r i s t i c s of such n u m b e r s . 

2. DEFINITIONS 

A posit ive number G will be called a gauntlet if it has a cyclic 
permuta t ion with the p roper ty that, when the na tura l number g making 
up its last n digits be moved to the f i rs t n d ig i t s ' posit ions of the 
number , then the resu l t is exactly the product gG. When such a num-
ber G exis ts for a na tura l number g we will occasional ly wri te G(g) 
for emphas i s . The product gG is called the second o rde r gauntlet, 

(2) 
wr i t t en G 

We a lso define the function D whose value D(x) is the number 
(2) 

of digits in x. It follows from the above definitions that D(G) = D(G ). 

3. FAMILY OF GAUNTLETS 

The quest ion a r i s e s : a r e the re many gauntlets for a single nat-
u r a l number1? We answer with a theo rem. 
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Theorem 1. Each natural number for which a gauntlet exists 

has infinitely many gauntlets each consisting of a number of sets of the 

same period. 

Proof. Let . p p ? . . . p , . be a digit-wise representation of 

G, a gauntlet of the natural number g. We observe that gG is of the 

form .q19L ?. . .qn/ K because D(G ) = D(G). This means there is no 

carry on the left after multiplication of G by g. This implies 

g . ( . P l . . . P D ( G ) P I • • • P D ( G ) ) = • qL • • • q D ( G ) q ! • • • q D ( G ) 

and the theorem follows by induction. 

Example: 

g= 4 

G,(g) = . 102564 

G[2)(g) = .410256 

G2(g) = . 102564102564 

G^2) = .410256410256 

Let us call numbers which are gauntlets for the same natural 

number and whose digits are repetitions of the digits of a simpler gaunt-

let members of the family of that gauntlet. Similarly we define a fam-

ily of second order gauntlets. Hereafter unless otherwise stated G 
(2) 

and G will be understood to be the least positive gauntlets of their 
families. 

4. DIGITS COMMON TO ALL GAUNTLETS 

Theorem 2. The leading non-zero digit of a gauntlet is 1. 

Proof. Let g be represented by the digit-wise expansion 
(2) 

c l C 2 " - c D ( g r T h e n G = • c l C 2 - - - C D ( g ) x l x 2 - - ' X D ( G ) - D ( g ) - N o W 

• 0 . . . 0 1 
( 1 ) c l ' * * CD(g))' CT • • CD(g)-lCD(g)XlX2- * -XD(G)-D(g) 

and by definition the quotient must be G. 
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Corol la ry 2. A gauntlet of the na tura l number g has exactly 

D(g)-1 leading z e r o s . 
Proof. Count the leading ze ros of the quotient of (1). 
Note. The leading ze ros a r e par t of the repeat ing set of digits 

in the family of a gauntlet. 
Theorem 3. For g not a power of 1 0 there a r e exactly 2D(g)-l 

ze ros to the immedia te right of the leading non-ze ro digit 1 of G. 
Proof. F r o m (1) 

G = - 0 r - - 0 D ( g ) - i l x r - - x D ( G ) - D ( g ) 

(the x. a r e now the unknown digits of the numera to r ) where 

X D(G) -2D(g )+r - ' x D(G) -D(g ) = C T " • cD(g) = g" 

Whence 

G - . c r . . c D ( g ) 0 r . - 0 D ( g ) - 1 l x ! x
2 - - - x D ( G ) - 2 D ( g ) -

Then by definition 

1 D(g)-1 1 D(g)-1 D(g) 
g ) e C r " C D ( g ) - l C D ( g ) ° r "°D(g)~\l X l X 2 " - X D ( G ) - 2 D ( g ) 

which impl ies 

1 D(g)-1 1 D(g)-1 D(g) 

This means that 

• • ° l , " ° D ( g ) - l 1 ° r - - 0 D ( g ) - l 0 D ( g ) 0 D ( g ) + r - - 0 2 D ( g ) - l X - - -
8 ) - c l - " c D ( g ) - l c D ( g ) 0 l " - 0 D ( g ) - l 1 °1 • • • °D(g)-l ° D ( g ) " -

(and x is non -ze ro because 1 0 . . . . . 0 . . is g r ea t e r that g) which 
p roves the theo rem. 

Coro l la ry 3. The gauntlet of a na tura l number g which is a 
power of 10 is exact ly . 0, . . . 0 ^ . . . 1 0 ' . . . . . 0,^, . , . H y 1 D(g)-1 1 D(g)-1 

Proof. That g=10n impl ies D(g)=n+1. That is to say 
g=10, . . . 0 = 10, . . . 0^ / . , , the t e rmina l D(g) digits of & 1 n 1 D(g)-1 x& to 

. o 1 . , . o D ( g ) _ 1 i o l . . . o D ( g ) _ 1 . 
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and 

'°i-Vi10i-Vi 
x 1 0 r - 0 D ( g ) - i 

• 1 0 T • * ° D ( g ) - l ° r * ' °D(g)- l Q. E..D. 

Exceptions mus t always be made in the following d i scuss ion for 
g=10 because only with such a g a r e the D(g) ini t ial digits of g the 
digits of g itself. 

Examples for the co ro l l a ry . 

G ( l ) = . l 

G(10) = .010 
It should be obvious by now that it is la rge ly inconsequent ial 

whether we cons ider gauntlets as in tegers or dec ima l s , because whether 
the number is 010 or .010 the digits a r e the same and our p r i m a r y 
concern is which leading or t ra i l ing ze ros a r e pa r t of the number , not 
where the dec imal point goes . It is m o r e amenable to the notion of 
famil ies to use dec imals because of the obvious s imi l a r i t y to per iodic 
dec ima l s . However, in a following theorem (Theorem 5) the proof is 
expedited by re fe rence to gauntlets as i n t ege r s . 

5. GENERATION OF A GAUNTLET IN SETS OF DIGITS 

Let us now examine the in te r re la t ionsh ips of the digits within a 
gauntlet and the way in which a na tu ra l number genera tes i ts own gauntlet . 

Remark . The following d i scuss ion develops an a lgor i thm which 
finds G for g^lO . Coro l la ry 3 found G for every g=10 , and it 
may be readi ly verif ied that the a lgor i thm of this sect ion finds a l a r g e r 
m e m b e r of the family of G(10 ). 

The t e r m i n a l D(g) digits of G m a k e u p g itself. Consequently 
the t e rmina l D(g) digits of G mus t be the t e r m i n a l D(g) digits of 

2 
g which a r e a lso the D(g)+lst through the 2D(g)th digits of G, 
counting from the righthand s ide . That i s , 

G = " XD(G)' " ' X2D(g)+ld2D(g)? • * dD(g)+lCD(g)- • • C l 
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where the d 's a r e the D(g) t e rmina l digits of g 2 and of gG=G* . 
Moving leftward along G we see that the next set of D(g) x ' s mus t 
r e p r e s e n t the t e rmina l D(g) digits of the sum of the leading digits of 

2 
g not included in the set d^, . . . . d , and g- (d^ . x . . . d . , ) . So is the 

D(g) i & D(g) r 
next set of D(g) digits re la ted to those to the r ight of it . To r e s t a t e 
symbolical ly what we have jus t verbal ized, the ith set of D(g) digits 
(counting from the r ight where the a ' s a r e the sets) m a y be wr i t t en 

(2) 

where 

(3) 

a. 
i s a i - i + r i - r 

a i _ l ! 

*a. , +r. ,* 3 l - l i~ l 

^D(U 

10 D(gy 

a x = £ and 

D(g) 10 

r =0. 

(Brackets indicate g rea t e s t in teger division. ) 
These equations, which follow d i rec t ly from the definitions, con-

sti tute an a lgor i thm which, depending upon g alone, inevitably p r o -
duces G(g) if it ex i s t s . Since the a lgor i thm genera tes only se ts of 
D(g) digits each we may conclude D(g) divides D(G) and when G ex-
i s t s it has a lef t -most set a. whose digi t -wise r ep re sen ta t ion is 
0 . . . 0 1 and that r . + 1 = 0 . These conditions provide c r i t e r i a for stopping 
the a lgor i thm at a.. 

R e m a r k . The single exception to the rule "D(g) divides D(G)" 
is for g=10 . The r ea son is that the two a. of Gr(10 ) share the com-
mon digit 1. However, the a lgor i thm will find a G'(10 ) > G such that 
D(g) divides D(G'). That G(10n) is the only possible exception for 
the success of the a lgor i thm may be readi ly verif ied. 

Theorem 4. If G ex is t s for a given g the a lgor i thm (given 
above) gene ra t e s G, and the condition a.=l and r . ,~0 is sufficient 
to t e rmina t e the a lgor i thm. 

Proof. That the a lgor i thm genera tes G follows from the p r e -
ceding r e m a r k s in this sect ion. If a.=l and r... =0 the a lgor i thm 
begins to repea t the digits of G because a. =g. l+0-0=g, and r . ? = 0. 
This is ident ical ly the si tuation at the beginning of the a lgor i thm, which 
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m e a n s from this point it would r egene ra t e the same digi ts . Hence if 
a. is the f i r s t set equal to 1 and such that r . =0 then the digits gen-
e ra ted up to that point make up the leas t posit ive m e m b e r of the fam-
ily, that is G. 

Remark . An a lgor i thm mentioned by Johnson [2] will find the 
per iod of the r ec ip roca l of 10m- l (where m is a na tura l number) , 
but the r e su l t does not have the combined mult ipl icat ive and p e r m u t a -
tive p roper ty , which is the subject of this paper , for m of m o r e than 
one digit. 

Example . The per iod . 10027, a cyclic permuta t ion of that 
found for m=37 by Johnson 's method, has not the same p rope r ty as 
has the number found by my method for m=37, namely 

.01000 27034 33360 36766 6937. 
x 37 

37010 00270 34333 60367 6669 

THE EXISTENCE THEOREM 

Theorem 5. For every na tu ra l number there exis t s at least one 
gauntlet and hence one family of the gauntlet . 

Proof. That G(10 ) ex is t s follows from Coro l l a ry 3. Assume 
g^lO . As usual we a s s u m e G is the sma l l e s t posi t ive m e m b e r of i ts 
family. We r eca l l that D counts al l the digits in a number which a r e 
pa r t of that number . This includes leading z e r o s . Let G be con-
s idered an in teger . The re la t ionship between g and G, from the def-
ini t ions, is 

Cbg + g l 0 D ( G ) - D ( g ) = g G = g ( 2 ) 
1 0D(g) 

which simplif ies thus: 

G-g + l O ^ g ^ O ^ g G 

G d - l O ^ g ) + g ( 1 0 D ( G ) - l ) = 0 

c _ g ( i o D ( G ) - D 
1 0 D ^ g - l 
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Now we r equ i r e that G be an in teger , which is t rue if and only 

ongruent to 0 modulo 10 fe 

1 0 D ( G ) g E g m o d ( 1 0 D ^ g - l ) . 

if g(10 -1) is congruent to 0 modulo 10 ^ g ' g - l . This means 

Since 10 g ' g - l and g a r e re la t ive ly p r ime 

1 0 D l G > s l . m o d ( 1 0 D t e > g - l ) . 

Now 

(4) 10 X = l . m o d ( 1 0 D ( g ) g - l ) 

has a solution x = <p(!0 g-1) by F e r m a t ' s theorem because 10 and 
10 ^ g-1 a r e re la t ive ly p r i m e . That is to say 

(5) 10Xg = g m o d ( 1 0 D ( g ) g - l ) 

has a solution which means the re ex is t s an in teger K such that 

1 0 ^ l g ; g - l 

for a given in teger g, 
All solutions to (4) may be found in the following way. We divide 

success ive ly inc reas ing powers of 10 by 10 g-1 until finally we a r e 
left with a r ema inde r of 1. This impl ies the solution to (5) m a y b e 
found s imi l a r ly . We divide the product of g and success ive ly i n c r e a s -

D(g) ing powers of 10 by 10 g-1 until finally the re is a r ema inde r of g. 
The number of ze ros we use is the solution x. 

Now (6) has a l eas t posit ive solution x n . Let the n u m e r a t o r (7) 
of the following expres s ion be the leas t posit ive such numera to r , that 
is let the appearance of g as a r e m a i n d e r be the f i r s t such appearance 
of g. If we can show that (7) is G we a r e finished since D((7)) which 
is x n will a l so be D(G), and x n is known to be the least posit ive solu-
tion of (6) such that K is the leas t posit ive in teger , and G is a s sumed 
to be the leas t posi t ive gauntlet of g. 
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(7) 
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• P 1 P 2 - - - P V 

Dec. 

10 D(g) 0̂ 
g-1 )g.O 0 . . . 0 

(8) q, 
(9) _ 
(10) g 

F o r keeping t r a ck of our ze ros we will r e v e r t to the use of d e c i m a l s . 
Adding t e r m i n a l ze ros to 1 . 0 0 0 . . . is simplified by the na ture of the 
number (i. e. 1.0 followed by infinitely many ze ros is equivalent to 1.0). 
We find ourse lves studying 

1 
glO D(g) 1 

or , equivalently, 

g l O ^ - l 

a s far as x n is concerned, r a the r than 

10 ° 
, 1 0 ° ^ - ! 

gio 
glO D(g) 

D(gh Let g be expanded digitwise as c , . . . c n . .. Since 10 5 ' g - l 
e n d s i n 9 . and (8) ends in 0 while g ends in c „ , ., then p x can only 
be c D , .. We r ewr i t e (8), (9) and (10) as (13), (14) and (15) below: 

(11) 
(12) . . . 

(13) 

(14) 

(15) 

Si 
c D(g) 

(g10D<g>-l) 

'1 'D(g) 

We introduce the convention of b r ace s about the d igi t -wise ex-
pansion of a number to clarify a r i t hme t i c e x p r e s s i o n s . Then we may 
wr i te (14) as 

! c r - - c D(g) i 10 D(g) CD(g)_CD(g) 
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Adding g we have (13): 

| C l - - - C D(g ) | • CD(g)1 0 D ( g )-CD(g)+ iCl---CD(g) 

which reduces to 

D(g). 10 . i C l - C D ( g ) i • CD(g)10 ™ + | C l - - - C D ( g ) - l i • 

But (13) without the suffixed 0 is 

| 1 D(g)\ D(g) J 1 D(g)-lJ 

which terminates in c~, x , . This means that 
D(g)-1 

P x o _ 1 = c D ( g ) - r w h e n c e ( 1 2 ) i s (%l°B(g)-l^cD(g)-v 

This implies that (11) is 

| C r - - C D(g)S • CD(g)-l1 0 g"CD(g)- l 

+ ! C l - - - C D ( g ) i - C D ( g ) 1 0 D ( g ) " 1 + | C l - - - C D(g)- l i • 

Redcuing as before and removing the suffixed 0 we have for (11) 

j c l - - C D ( g ) | • |CD(g)-lCD(g)| • 1 ° D < g > ' Z + - j c r - - c D ( g ) - 2 ( • 

By induction after D(g) such steps the remainder is 

(16) h - . - c ^ J j C l . . . c D ( g ) } . 10 0
+ ]o| . 

At each step the terminal digit in the remainder was a c . This implies 

0-D(g)+l 0 L Kg) 

At this point the remainder ends in \g / . (The newnotation 

means the last digit of. ). This means 

p X o - D ( g r (g2) • 

This seems to indicate generation of the same digits of the algorithm 

of section 5. Indeed they are identical because the minuend producing 

the remainder (16) is 
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which after removal of the suffixed zero is 

h . . . c D ( g ) ( ( / ) , 0 ^ - ' *2- U) 
10 

which ends in(g •- (g ) / , and we see we must exhaust D(g) powers 

of 10 again, thereby setting p . . . p r\t \ e<~Lua-l- to the 
• i TM x A- • + * Z X0-2D(g)+l *0'U{g) 

terminal D(g) digits of g . 0 / 

Alternatively we must, every D(g) steps, exhaust the D(g) dig-

its of a set which corresponds to some a. of the algorithm. There-

fore by Theorem 4 the numerator is G if its first D(g) digits are 

0, . . . Op, . ,1 and its next B(g) digits are 0. This latter condition 
is sufficient to make r. . , = 0 . 

i+l 
We write the initial situation in the division process as 

n/ \ D(g)-1 
K- - - C D(g ) [ - 1 0 { g ) - M c 1 . . . c D ( g ) . 0 1 . . . 0 D ( g ) _ 1 0 D ( g ) . . . 

i c l ' " C D ( g ) °1 ' • ^ ( g ) } " 1 

because 

and since 

we have 

10D^g> = c , . . . c^, x0, . . . 0, j C r ' - C D ( g ) ( * ^ ~ L r i , v - D ( g n D(g) 

r>(p) l D (g)-1 1 ZP(g)-1 

I 1 D(g)f ' 1 D(g) 1 D(g)-1 D(g) D(g}+1 

Q.E.D. 

Corollary 5. For every natural number there is only one fam-

ily of gauntlets and only one G, the least positive gauntlet. 

Proof. The uniqueness of the algorithmic process and also of 

the division in the previous theorem. 
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7. A D D I T I O N A L T H E O R E M S 

The fo l lowing t h e o r e m s , w h i c h m a y be e a s i l y v e r i f i e d , a r e s u b -

m i t t e d w i t h o u t p roof . 

T h e o r e m 6. The p e r i o d of n / ( n l O -1) w h e r e n i s a n y 
p o s i t i v e i n t e g e r i s t he s a m e a s t h e p e r i o d of t h e r e c i p r o c a l of nlO - 1 . 

T h e o r e m 7. E a c h d i g i t of the p e r i o d on n / ( n l O -1) a p p e a r s 

i n s u c c e s s i o n a s t h e t e r m i n a l d ig i t of a r e m a i n d e r w h e n d e c i m a l d i v i -

s i on i s c a r r i e d ou t . 

E x a m p l e : 

g = 4 
D(g) = . 1 0 2 5 6 4 

g 1 0 D ( g ) - l = 39 

. 102564 
39 ) 4 . 0 0 0 0 0 0 

22 
(Do 
00 
i@o 

78 
2(2)0 
1 9 5 

2(5)0 
2 3 4 

1 © 0 
1 5 4 

T h e o r e m 8. The d i g i t s of t he p e r i o d of l / ( n l 0 * n ' - l ) a r e a 

c y c l i c p e r m u t a t i o n l e f t w a r d D(g) p l a c e s of t h o s e of n / ( n l 0 -1 ) 

w h e r e n i s a n y na tu raL n u m b e r , a n d t h e o r e m 7 h o l d s for l / ( n l 0 - 1 ) . 

T h e o r e m 9. F o r G the g a u n t l e t of a g i v e n g, the fo l lowing r e -

l a t i o n h o l d s , 2 D ( g l O D ( g ) - l ) <D(G) < g l O D ( g ) - 2 . 

T h e o r e m 10. D(g) d i v i d e s the p e r i o d of g / ( g l 0 g -1 ) and 

h e n c e of l / ( g l 0 - 1 ) , p r o v i d e d g / 1 0 , and , for g=10 , t h e n 

D(G) = 2 D ( g ) - l . 
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PARTIAL TABLE OF THE FIRST 100 GAUNTLETS 
The Pe r iod 

D(G) 
1 1 • I 

2 .10526 31578 94736 842 18 

3 .10344 82758 62068 96551 72413 793 28 

4 .10256 4 6 

7 .10144 92753 62318 84057 97 22 

34 .01000 29420 41776 99323 33039 12915 5634 34 

37 .01000 27034 33360 36766 6937 24 

100 .00100 5 

9. APPENDIX 

of a 
permuta t ion 

of of 
1 
9 
2 

19 
3 

29 
4 

39 
7 

S9 
34 

1 
9 
1 

19 
1 

29 
1 

39 
1 

69 
1 

3399 3399 
37 1_ 

3"5"99 3^99 
100 1 

99999 99999 

An in te res t ing quest ion i s , a r e the re any m o r e in t ege r s , g, such 
as 1 and 34, where D(G) = g? 
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