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I. INTRODUCTION
In number theory one encounters such numbers as
.105263157894736842

(the period of 2/19) and . 102564 (the period of 4/39) one of whose very
interesting properties will be treated here. If the terminal digit be
removed from the end of the number and placed at the beginning, the

result is the product of that digit and the original number.

Examples:
.105263157894736842 .102564
~ and
x 2 x 4
.510526315789473684 . 410256

The purpose of this paper will be to investigate the existence and

characteristics of such numbers.

2. DEFINITIONS

A positive number G will be called a gauntlet if it has a cyclic
permutation withthe propertythat, when the natural number g making
up its last n digits be moved to the first n digits' positions of the
number, thenthe result is exactly the product gG. When such a num-
ber G existsfora natural number g we will occasionally write G(g)
for emphasis. The product gG is called the second order gauntlet,
written G(Z).

We also define the function D whose value D(x) is the number

ofdigitsin x. Itfollows from the above definitions that D(G) = D(G(Z)).

3. FAMILY OF GAUNTLETS

The question arises: are there many gauntlets for a single nat-

ural number? We answer with a theorem.
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Theorem 1. Each natural number for which a gauntlet exists
has infinitely many gauntlets each consisting of a number of sets of the
same period.

Proof. Let -PyPy-- 'pD(G) be a digit-wise representation of
G, a gauntlet of the natural number g. We observe that gG 1is of the

form because D(G(Z)) = D(G). This meansthere is no

4y - qD(g)
carry on the left after multiplication of G by g. This implies

g'('pl'"pD(G)pl"'pD(G)) =.q;- "qD(G)ql' "qD(G)

and the theorem follows by induction.

Example:
g=4

G, (g) = . 102564

G\#)(g) = . 410256

G,(g) = . 102564102564

G{?) = . 410256410256

Let us call numbers which are gauntlets for the same natural
number and whose digits are repetitions of the digits of a simpler gaunt-
let members of the family of that gauntlet. Similarly we define a fam-
ily of second order gauntlets. Hereafter unless otherwise stated G
and G(Z) will be understood to be the least positive gauntlets of their

families.

4. DIGITS COMMON TO ALL GAUNTLETS

Theorem 2. The leading non-zero digit of a gauntlet is 1.
Proof. Let g be represented by the digit-wise expansion

Then G(Z) = .cC

ClC 1

C

2"'CD(g)' 2"’CD(g)XIXZ"'XD(G)-D(g)' Now

.0 ...0 1 :
Cpee- CD(g)rcl' o, CD(g)-ch(g)XIXZ' . 'XD(G)—D(g)

(1)

and by definition the quotient must be G.
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Corollary 2. A gauntlet of the natural number g has exactly
D(g)-1 leading zeros.

Proof. Count the leading zeros of the quotient of (1).

Note. The leading zeros are part of the repeating set of digits
in the family of a gauntlet.

Theorem 3. For g notapowerofl0Othere are exactly 2D(g)-1
zeros to the immediate right of the leading non-zero digit 1 of G.

Proof. From (1)

G=.0

I1x,...x

1 Op(g)-11 %1 - *D(G)-D(g)

(the X, are now the unknown digits of the numerator) where

« X

*D(G)-2D(g)+1" " " *D(G)-D(g) ~ 1" “D(g) ~ &

Whence

(2) _
G = .Cpees cD(g)Ol' . 'OD(g)—ll X X5 'XD(G)-ZD(g)'

Then by definition

01 Opg)-1t %1+ Op(g)-1%pg)

g). Cyeee CD(g)—ch(g)Ol' . OD(g)-

which implies

10

G = .OlotcoD(g)_l ]_"'OD(g)']-OD(g)-..

This means that

1 0,...0 0,10 )

0 Opy 1 1 D(g)-1 D(g) D(g)+1 2D(g)-1%

.. 0....0 T ... 0 0 ..
g)cpr-Cpig-1°p(e) 1 Ipg-1t % D(g)-1 ’D(g)
(and x is non-zero because 101"'OD(g) is greater that g) which

proves the theorem.

Corollary 3. The gauntlet of a natural number g which isa
1"'OD(g)-11 01"'OD(g)—1'
Proof. That g=100 implies D(g)=n+l. That is to say

power of 10 is exactly .0

g=101...0n = 101"'0D(g)-1’ the terminal D(g) digits of

PO Opy oy 1 0pe e Oy g
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and
01+ 0pg)-11 01+ Opg)-1
x 101"'0D(g)—1
101405511017+ O g)-1 Q.E.D.

Exceptions must always be made in the following discussion for
g:lOn because only withsucha g arethe D(g) initialdigits of gz the
digits of g itself.

Examples for the corollary.

G(l) =.1

G(10) = .010

It should be obvious by now that it is largely inconsequential
whether we consider gauntlets as integers or decimals, because whether
the number is 010 or .010 the digits are the same and our primary
concern is which leading or trailing zeros are part of the number, not
where the decimal point goes. It is more amenable to the notion of
families to use decimals because of the obvious similarity to periodic
decimals.  However, in a following theorem (Theorem 5) the proof is

expedited by reference to gauntlets as integers.

5. GENERATION OF A GAUNTLET IN SETS OF DIGITS

Let us now examine the interrelationships of the digits within a
gauntlet and the way inwhicha natural number generates its own gauntlet.

Remark. The following discussiondevelops an algorithm which
finds G for g;:’lon, Corollary 3 found G for every g:lOn, and it
may be readily verified that the algorithm of this section finds a larger
member of the family of G(lOn).

The terminal D(g) digitsof G makeup g itself. Consequently
the terminal D(g) digits of G must be the terminal D{(g) digits of
gz which are also the D(g)+lst through the 2D(g)th digits of G,
counting from the righthand side. That is,

G=. XD(G)' . XZD(g)+1d2D(g)’ .o dD(g)+1CD(g)' <.y
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where the d's are the D(g) terminal digits of g2 and of gG:G(Z).

Moving leftward along G we see that the next set of D(g) x's must

represent the terminal D(g) digits of the sum of the leading digits of
e..d nd g-(d ceedl). i

D(g) 1 2 g D(g) 1) So is the

next set of D(g) digits related to those to the right of it. To restate

gz not included in the set d

symbolically what we have just verbalized, the ith set of D(g) digits

(counting from the right where the a's are the sets) may be written

ga; 11T D(

- } g)

(2) ai - gai—1+ri-1 |: _——(T_loD g . 10

where

(3) fi-18 d r.=0
r., = , a,=g, and r_ =0.
i 10D(gf. 1 1

(Brackets indicate greatest integer division.)

These equations, which follow directly from the definitions, con-
stitute an algorithm which, depending upon g alone, inevitably pro-
duces G(g) if it exists. Since the algorithm generates only sets of
D(g) digits eachwemayconclude D(g) divides D(G) andwhen G ex-
ists it has a ‘left-most set a, whose digit-wise representation is
0...01 andthat rj_l_l:O. These conditions provide criteria for stopping
the algorithm at a..

Remark. The single exceptiontothe rule ''D(g) divides D(G)"
is for g:lOn. The reasonis that the two a; of Gi(l()n) share the com-
mondigitl. However, the algorithm will find a G'(lOn) > G such that
D(g) divides D(G'). That G(10™) is the only possible exception for
the success of the algorithm may be readily verified.

Theorem 4. If G exists for a given g the algorithm (given
above) generates G, and the condition aj=1 and rj+1=0 is sufficient
to terminate the algorithm.

Proof. That the algorithm generates G follows from the pre-
ceding remarks in this section. If a.=1 and rj+l=0 the algorithm
begins to repeat the digits of G because aj+1=g-1+0-0:g, and rj+2=0.
This is identically the situation at the beginning of the algorithm, which
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means from this point it would regenerate the same digits. Hence if

aj is the first set equal to 1 and such that r. =0 then the digits gen-

erated up to that point make up the least pogitlive member of the fam-
ily, that is G.

Remark. An algorithm mentioned by Johnson [Z] will find the
period of the reciprocal of 10m-1 (where m 1is a natural number),
but the result does not have the combined multiplicative and permuta-
tive property, which is the subject of this paper, for m of more than
one digit.

Example. The period .10027, a cyclic permutation of that
found for m=37 by Johnson's method, has not the same property as

has the number found by my method for m=37, namely

.01000 27034 33360 36766 6921
x 37
.37010 00270 34333 60367 6669

6. THE EXISTENCE THEOREM

Theorem 5. For everynatural number there exists at least one
gauntlet and hence one family of the gauntlet.

Proof. That G(lOn) exists follows from Corollary 3. Assume
g%lOn. Asusualwe assume G is the smallest positive member of its
family. We recall that D counts all the digits in a number which are
part of that number. This includes leading zeros. Let G be con-
sidered aninteger. The relationship between g and G, from the def-

initions, is

(2)

G-g D(G)-D(g) _ -
+ 10 = =
IOD(g) g gG=g
which simplifies thus:
G-g + 10P(9)g = 10P@)gg

G(1-10P®)g) + g(10P() 1) = ¢

G - g9
10D(g)g_1
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Now we require that G be an integer, which is true if and only

if g(lOD(G)—l) is congruent to 0 modulo IOD(g)g—l. This means

IOD(G)g =g mod(lOD(g)g-.l).
Since IOD(g)g—l and g are relatively prime
10209 - 1 moa10P(®g.1).

Now

(4) 10% = 1 mod(10°(®)g-1)

has a solution x = qb(lOD(g)

10P(8)

g-1) by Fermat's theorem because 10and

g-1 are relatively prime. That is to say

(5) 10%g = g mod(10P®g.1)

has a solution which means there exists an integer K such that

_ gllo™-1)

10084

(6) K

for a given integer g.

All solutions to (4) may be found in the following way. We divide

D(g)

successivelyincreasing powersof10 by 10 g-1 until finally we are

left with a remainder of 1. This implies the solution to (5) may be

found similarly. Wedivide the product of g and successively increas-

D(g)

ing powersof 10 by 10 g-1 until finally there is a remainder of g.

The number of zeros we use is the solution x.

Now (6) has a least positive solution x Let the numerator (7)

0’
of the following expression be the least positive such numerator, that
is letthe appearanceof g as a remainder be the first such appearance
of g. Ifwecanshowthat (7) is G we are finished since D((7)) which

is X willalso be D(G), and X0

tion of (6) suchthat K isthe least positive integer, and G is assumed

is knownto be the least positive solu-

to be the least positive gauntlet of g.
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(7) +PyPye P
Dlg), | o
107'8/g1 y5. 00 ...0

(8) qqee- 0

(9 ‘e

(10) g

For keeping track of our zeros we will revert to the use of decimals.
Adding terminal zeros to 1.000... is simplified by the nature of the
number (i. e. 1.0 followed by infinitely many zeros is equivalent to 1. 0).

We find ourselves studying

1
— BT
g10018) 3
or, equivalently,
g
—ET
g10008) 4
as far as % is concerned, rather than
x X
10 0 or gl0 0
gro8) groPte) g

Let g be expanded digitwise as Cl"'CD(g)' Since IOD(g)g—l

endsin9, and (8) ends in 0 while g ends in CD(g), then Px, can only

be CD(g)' We rewrite (8), (9) and (10) as (13), (14) and (15) below:
(11) “ e

(12) e

(13) q --. O

(14) cD(g)(gloD(g)-l)

(15) c

1 oo CD(g)

We introduce the convention of braces about the digit-wise ex-
pansion of a number to clarify arithmetic expressions. Then we may

write (14) as D(
g)
pig)f 107 e

~-C

%C es e C D(g).

1
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Adding g we have (13):

which reduces to

%Cl' .. CD(g)% . CD(g)

But (13) without the suffixed 0 is

. C 10D(g)—1+ 3

%Cl' . CD(g)E

which terminates in c

D(g)

D(g)-1" This means that

P, -1

X0 =c RE whence (12) is (glOD(g)-l).c

D(g)

This implies that (11) is

+ %cl...c 10D(g)—1 + gc

D(g)} - °D(g) 1"* - CD(g)-1

Redcuing as before and removing the suffixed 0 we have for (11)

gcl"'CD(g)i . aCD(g)-ch(g)% . 10D<g)_2 +. gc

D(g)-2} °
By induction after D(g) such steps the remainder is

(16) - 10%+ {0}

écl"'CD(g)g %CI"'CD(g)

At each step the terminal digitinthe remainder wasa cye This implies

-p, = Cl"'CD(g)’

P ..
*0-D(g)+1 0

At this point the remainder ends in <g2> . (The new notation

means the last digit of.) This means
- &)
pXO-D(g) B J ’

This seems to indicate generation of the same digits of the algorithm
of section 5. Indeed they are identical because the minuend producing

the remainder (16) is
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%cl...cD(g)%, 107(8) <g2'> - <g2> + g

which after removal of the suffixed zero is

2 2
icl'”CD(g)z <g2> 10D(g)'l + g - lgg>

which ends in <g2 - <g2>> , and we see we must exhaust D(g) powers

of 10 again, thereby setting p

...p
X x,-D(g)
terminal D(g) digits of gZ. 0-2D(g)+1 0

equal to the

Alternatively we must, every D(g) steps, exhaust the D(g) dig-
its of a set which corresponds to some a; of the algorithm. There-
fore by Theorem 4 the numerator is G if its first D(g) digits are

0yvn- OD(g)—ll and its next D(g) digits are 0. This latter condition

is sufficient to make T T 0.
We write the initial situation in the division process as
.0

0

1+ Op(g)-1?
1 05(g)-1%D(g) -

D(g) :
zcl"'CD(g)g .10 _l)cl"'CD(g)'

;Cl"'CD(g) Ol . . OD(g)% -1

1

because

10P(8) _

%CI"'CD(g)% . cl"'cD(g)Ol"'OD(g)

and since

we have

0Oy gL 0 Oy g
b 1" *pie)-1°D(g) D)1 -

zcl. .- CD(g)%. IOD(g)—l)cl. .. C

Q.E.D.

Corollary 5. For every natural number there is only one fam-
ily of gauntlets and only one G, the least positive gauntlet.
Proof. The uniqueness of the algorithmic process and also of

the division in the previous theorem.
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7. ADDITIONAL THEOREMS

The following theorems, which may be easily verified, are sub-
mitted without proof.
D(n)

Theorem 6. The period of n/(nl0 -1) where n is any

positive integer is the same as the period of the reciprocal of nlOD(n)- 1.
Theorem 7. Eachdigit of the period on n/(nlOD(n)—I) appears
in succession as the terminal digit of a remainder when decimal divi-
sion is carried out.
Example:

4
. 10256é

39

non

g
D(g)
glOD(g)_l

.102564
39 J4.000000
3

39
@o

D(n)_1

Theorem 8. The digits of the period of 1/(nl0 ) are a

cyclic permutation leftward D(g) places of those of n/(nlOD(n)-l)
where n isanynaturalnumber, andtheorem 7 holds for 1/(n10D(n)-1).
Theorem 9. For G the gauntlet of a given g, the following re-
lation holds, 2D(gloP®) 1) <pG) <g10P(8). 2,
Theorem 10. D(g) divides the period of g/(glOD(g)—l) and
hence of 1/(g10D(g)—l), provided g%lOn, and, for g:lOn, then
D(G) = 2D(g)-1.
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8. PARTIAL TABLE OF THE FIRST 100 GAUNTLETS

The Period

of a
permutation

G D(G) - of of
_g_

1 .1 1 _I _I
- 9 9
2 1
2 .10526 31578 94736 842 18 5 19
3 .10344 82758 62068 96551 72413 793 28 % -2—(1;
4 1
4 ,10256 4 6 39 79
7 1
7 .10144 92753 62318 84057 97 22 %9 59
34 1
34 ,01000 29420 41776 99323 33039 12915 5634 34 33959 3399
37 1
37 .01000 27034 33360 36766 6937 24 3699 3699
100 1
100 00100 > 39999 99999

9. APPENDIX

Aninteresting question is, are there any more integers, g, such
as 1 and 34, where D(G) = g?
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