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1. INTRODUCTION

Let Wo’ W., ¢c#0, and d # 0 be arbitrary real numbers, and

1
define
— 2 -
(1.1) W ,=dW , -cW_ ,d"-4c#0, (n=0,1,...),
(1.2)  z_=(a"- ") /(a - p) (n=0,1,...),
(1.3) vn:an+gn n=0,1,...),

where o # B are roots of yz -dy +c =0. We shall define

- - n -
(1.4) W= (W VvV Wn)/c (n=1,2,...).
If W =0 and W, =1, then W =7, n=0,1,...; and if W = 2
o 1 n n o
and W1 = d, then Wn = Vn’ n=0,1,.... The phrase, Lucas func-

tions (of n) is often applied to Zn and Vn’ which may also be ex-
pressed in terms of Chebyshev polynomials (see (5.1) and (5.2)).

Inthis paper, general results (see section 3) have been obtained
that yield new even power identities (Theorem 1) for sequences de-
fined by (1.1). An additional result, Theorem 2, which contains
Theorem 1 as a special case, yields identities whose typical term is
the product of an even number of arbitrary terms taken from a given
sequence defined by (l.1). Particular applications will be given for

Fibonacci sequences and Chebyshev polynomials.

2. PRELIMINARIES

We shall need the following result:
Lemma 1. Let WO, Wl’ ¢c#0, and d#0 be arbitraryrealnum-
bers, and let Wn’ n=0,1,..., satisfy (1.1). Let m,p=1,2,...,
and define

P
(2.1) Qn,p,m,i,,...,1 )= 0 W =0Q (n=0,1,...),
! P gn1

241



242 POWER IDENTITIES FOR SEQUENCES Dec.

where is, s=1,2,...,p, are positive integers or zero. Then Qn

satisfies a homogeneous, linear difference equation of order p+l
with real, constant coefficients whose characteristic equation is

g(y) = 0, where

- J mp _ 3 .
2 YT V2 T ) (p=1,3,5,...);
(2.2) gly) = | o2/
- pm/z P- 2 _ mJ mp
- (p=2,4,6,...)

., p, denote arbitrary con-

Proof. Let A, B, and Cs’ s=0,1,..
stants. If a # p denote the roots of yZ -dy + ¢ =0, then

W= Ad" + Bp"
n

and

i mn i mn
mnti = Aa'®a + BRSSP .
s

Observing that

o]

Q = z

we can now conclude that Qn satisfies a homogeneous, linear dif-

ference equation of order p+l with real, constant coefficients, and

that am(p—s) Bms, s =0,1,...,p, are the distinct roots of tne cor-

responding characteristic equation g(y) = 0, where

P -
gly) = 1 (y - o pms)gms),

which simplifies to (2. 2) as follows:

Let Rs:am(p—s)ﬁms’ s =0,l,...,p. If p=1,3,5,...,

thereis an even number of roots, Rs’ and thus (p+1)/2 pairs, (y—Rj)-
"(y—Rp_j), j=0,1,...,(p-1)/2. Since aP=c, Vnz ™+ Bn, n=20,1,...,

we have R.+ R .= cm‘]V . R.R .= Cmp.
J p-J m (p-2j) -
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nt+2 n+l n

If p=2,4,6,.., there is an odd number of roots, RS, and thus
p/2 pairs, (y~R)(y-Rp_J.), i=0,1,...,(p-2)/2. The linear term,
y-—Rp/Z = y—cpm/z, accounts for the unpaired root, i.e., the middle
root, Rp/Z" This completes the proof of Lemma 1. Applications of
(2.2) for m =1 may be found in [1] , [2], [3], and [4].

In terms of the translation operator, E, where EJQn = Qn+j

B

j=0,1,..., set

(p-2)/2 :
_ 2 m}j _
T j:nO (B - Vm(P-ZJ)E te e, k=24 6sv)

Then, from (2.2), since g(E)Qn = (E-cpm/z)un = 0, we have

(2.3) u = u cmPR/2 (n=0,1,...:p=2,4,...).

We now define

p (p-2)/2 :
< (p) p-k _ 2 mj mp
(2- 4) k:O hk (d/(z N C))Y J:HO (Y C Vm(p—Zj)Y+C )

The coefficients h{(p) (d/(2 ¥c)), k=0,1,...,p, are also dependent
on m, which is notationally suppressed for simplicity. Using (2.4),

we may now rewrite (2. 3) as

(2.5) > nPla/z vey 1 ow .
k=0 k o=1 m(nt+p-k)+i
p p
- mpn/2 (p) -
=c > hrP(d/(2ve) n W
k=0 =1 PRt
(1’1—0,1, §P:2>4, )
Let p=29q, g=1,2,.... Since Vka = aka + Bka and c=
af, we can write (2.4) as
2q q
2 k 2 -k 2
2.6) z nZY @/ vay = ot ANy, g M
k=0 a- k=1
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q
: 0y - Crn(q—k)(lka)(Y ) Crn(q-k)BZrnk)
k=1
q ) i
= [y - MSe/e ™) [y - eesm T

Set y = ¢™M% in (2.6), which now simplifies to
2q (29) maqgk_k Zrnq2 mk mk
@1 > nfE (/e eE = o [ - (a/B)™] [x-(8/0)

Li=Rrte]

k=1

We now define

(2. 8) bf{zq) (d/(2V3)) = c“mqkhgq) (d/(2vE)) (k=0,1,...,2q) .

The, (2.7), with x replaced by y, now reads

Zq - q m m
@9 = b2 (a/(2veny® ek = o [y -tarer™ [y - /0™x]

4 2 -mk
= m (y" -V, iy D)

(m,q=1,2,...).
If we replace y by (1/y) in (2.9), we conclude that

(2q) _ (2q9) _
(2.10) b’ (d/(2 vc)) = bzq_k (d/(2ve)) (k=0,1,...,2q).

Our results will be expressed in terms of bgq) (d/(2Vc)). Recalling
(1.2) and that ¢ = af, we obtain from (2.9) for y =1

2q _ q
11y = D/ vey = (cnd cTmatat)/2 e gmk gmk2

k=0 k=1
— (-l)q(o. _ B)Zq C'mq(q+1)/2 ?I ZZ

- q
(4c—d2)q c mq(q+1)/2 I ZZ
-1 mk
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n+2 n+l n
since
2 2
(-1)%a - 0% = [2ap -(o® - 1] % =[2c - v, ],
and
vV, =dV, - ¢V = d2 2
2 1 “Vo T T oec.

We will use (2.11) in the proof of Theorems 1 and 2.

3. TWO THEOREMS

Our first general result is as follows:
Theorem 1. Let Wo’ Wl’ c ;-/ 0, and d 74- 0 be arbitrary real
numbers, and define Wn by (l.1). Let nO:O,l,...;m,qzl,Z,.,.;
and r=0,1,...,9. Then, for n=20,1,..., we have
c-mrn 29 Cmrk

k=0

2r

(2q) -
bk (d/(2Ve)) Wm(n+2q—k)+no

(3.1)

U ot4

= ¢"M0 + (mq(4r-q-1)/2 (er) (4c - a5)2°T

q
w2 o aw w, o+ ewHT o z4.
1 o 1 fe) k=1 mk

where bf{ZQ) (@/(2Ve), k=0,1,...,2q, are defined by (2. 9).

Proof. Since a # P, the general solutionto(l.1) is Wn = Ad" + BB,
n=0,1,..., where A and B are arbitrary constants whose values

satisfy Wo =A+B and '\/V1 = Aa + BB. We readily find that

(3.2) (p-a)A =W B - W, ., (B-a)B=W, -aW_

Since a +pf=4d, c=ap, and (B-a)2 = d2 - 4c, we obtain from (3. 2)

(3.3) (d% - 4c)AB = (W2

-dW W +CWZ)
1 o 1 o

Using the binomial theorem and then interchanging summations, we
obtain

2r

-mrn 2q Cmr(Zq—k) b(Zq)
z m(n+k)+n0

3.4 S =
(3. 4) c o 2q-k

(d/(2Ve)) W
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2q

= Tmrn (QB)-mrk b(ZZCE)k(d/(Z\E))(Aamn+mk+no : Ban+mk+no)Zr
k=0

- Cmr(?_q_n) er (21») AsBZr—s (asﬁlr—s)mn-kno G((a/ﬁ)m(s—r))

where, by (2.9) with y = (a/ﬁ)n(s—r)’ we have

m(s-r)

k
b‘sz_)k (@/(2ve) [(a/pr™ts-2) ]

m
™ o

(3.5)  G({a/B) )

k=0

1}

; (/6™ ) (a/py™K]

k=1

i/ ™D (o))

Since 0 S r < q and O <s < 2r, we have -q < s-r Sq. Thus, for
05s < 2r, s # r, the sum in (3.5) vanishes; but for s = r, we ob-
tain the non-zero term G(1l) (see (2.10), (2.11)). Thus, from (3. 4),

we obtain
Zmrqtrn, 2r r 2q (2q9)
(3.6) 5= (hy (ap)t sz b)Y (@/(2v))
T k
k=0

which yields the desired result with substitutions from (2.11) and
(3. 3)

The following general result yields Theorem 1 as an important
special case:
Theorem 2. Let Wo’ Wl’ C 75 0, and d # 0 be arbitrary realnum-
bers and define Wn by (1.1). Let m,g=1,2,..., and tr:i +

1
i2+... +i2r’ where is, s=1,2,...,2r, (r=1,2,...,q), are posi-
tive integers or zero. Then, for n=20,1,..., we have

2q 2r
-mrn mrk | (2q)
(3.7) b c b (d/(2ve)) n W _
k=0 k s=1 m(nt+2q-k)+i
_ maldr-q-1)/2 (4c-a2) 3T (W2 - aw W, +cw’)* 4 2
= ¢ r V€ ( 1 o1 T, £I mk ’

k=1
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n+2 n+l n
with

(3.8) Kr =

(3.9) o(j, r) = i(lj) + i(zj) + i(3j) oo+ i(rj) G=1,2,..., (°T71y

where, for each j, o(j,r), as the sum of r integers, i(SJ), s =
1,2,...,r, represents one of the (er-l) combinations obtained by

h . 2 . . . .
choosing r numbers fromthe 2r-1 numbers, BT TR PR TRE

Proof. From Lemma 1, we have
2r 2r m(2r-s) ms,n
(3.10) Q= m W_ . = > C/p S
s=1 s s=0

where CS, s =0,1,...,2r, arearbitraryconstants independent of n.

Recalling the proof of Theorem 1, we have (see (3.7))

3 2q 2r
(3.11) S= ¢ ™" 3 cmr(zq'k)b(zzq_)k(d/(z Va)) 3 ¢ (pTiErTslymsyntk

k=0 s=0
-mrnt2mgqr 2r 2r-s s r%ln 2q (2q) m(s-r)
=c z C_(B" "a")T 2 by M (d/(2Ve)((a/B) )k
=0 k=0 “9
2mqr 2q (2q)
e s bY@V
T 1o k

We proceed now to evaluate Cr' From (3.10), we have

[aS]

2r
(3.12) I Wmn+i _ BZmrn
s=1 s s

r

c (a/p)™™®

Il b4

0

whichis a polynomial inthe variable (a/ﬁ)mn. Since Wn = Ad" 4 BBn,

we have

= I:Aais (a/p)™" + B[Sis] )

mn+i
s
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and thus
2r Zmrn 2r is mn i
(3.13)  m W_ .. =8 n [Ac®® (a/p)™™ + Bp's]
s=1 s s=1
Zmrn , 2r t 2r mn i
= pUERAT (/BB /a)(B/m)te]
s=

If we compare (3.12) and (3.13), and recall the definition of the ele-
mentary symmetric functions of the roots of a polynomial equation,

we conclude that

(%)

Tr r .
(3.14) c =A%t C)Y : (-B/A)Y @ (B/a)'s, k
k=1 s=1

n
—
>
s3]

2}
Nt
Qo

™

where for each fixed k, k=1,2,..., (er), each set of numbers,

is,k’ s=1,2,...,r, 1is one of the (2;) combinations obtained by
choosing r numbers from the 2r numbers, iS, s=1,2,...,2r. It
should be noted that since (3.13) is a symmetric function in the var-
iables is’ s=1,2,...,2r, the role of iZr in the definition of o(j, r)
(see (3.9)) was a convenient choice. Since a choice of r numbers
froma set of 2r numbers leaves another set of r numbers, we may
pair off related terms of the sum in (3.14), noting our role assigned

2r-1

to i Thus, since (er) =2 ( - ), and

2r

atr -0(j, I‘)ﬁa(j’ r) + ao(j’ r) Btr - o4 ) - ¢ 70 Vtr - 290, 7)

(see (1.3)), we have

(3.15) C, = (AB)rKr (r=1,2,...,q) .
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Recalling definitions (2.11) and (3. 3),
(3.7) from (3.11).

we obtain our desired result

Remarks, For r =2, we have o(1,2) = il +iZ, a(2,2) = il + 13,
and 0(3,2) = iZ + 13.
For r = 3, we have
0(1,3):11+12 +13 , 0(6,3)211 +14+15,
e . _ .
g(2,3) = i ti, + iy , o0(7,3) = i, + iy + iy s
0(3,3) = i +12 +15 , 0(8,3) = iz +13 +15 ,
0(4,3):i1 -l'i3-l~14 , 0(9,3) = i +14+15,
(7(5,3):11 +13 +15 , 0(l10, 3)= 13+14+15,

S o

V =2, and K_=c'Mo (°T).  Thus, (3.7) yields (3.1) as a special

case. Indeed, using the binomial theorem on Wmn+n = Aa"%a™M™ +
pplog™mn o

If i =n,s=1,2,...,2r,then t_ -2 o(j,r)=2rn_ - 2rn =0,
r o o

, we obtain

2r
2r _ 2r s, 2r-s , s,2r-s,ng ,,m(2r-s) ms,n
L e TR

where, (see (3.10)) C_ = (%) ASB2T S(o5p%T %P0, s - 0,1,...,2r,
and thus Cr = ¢ Mo (er) (AB)T.
Consider the special case is =n, s = 1,2,...,2r-1, and

in £ n . Then o(j, r) = rn tr = (Zr—l)nO + i, and thus (see (3. 8))

_ rng 2r-1
Kr—c (r)v—no+i

2r

Next, consider the special case is = n. s =1,2,...,2r-2;

. . 2r-1 . . .
i1 # iz # n_. Of the set of ( - ) combinations for o(j, r), there

combinations which contain i . For these cases,
r-1 2r-1
2r-2 2r-2

. - . . - 2r-1y _ -
o(j, r) = (r—l)no + L and for the remaining ( . ) - | r-l) = ( . )
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combinations, we have o(j, r) = o . Thus, from (3.8), with tr=

(2r~2)r10 + i, q tis we obtain

(3.16) K =T lng 4y (*T- 2y, .
T 2r-1 ‘r-1""1 -1
2r 2r-1
rng 2r-2
+c ( V. .
r 1,1 + i, Zno

4. IDENTITIES FOR FIBONACCI SEQUENCES

Generalized Fibonacci numbers, Hn’ are defined by Hn+2 =
H +H , n=0,1,..., where H and H, are arbitrary integers.
n+l n o 1
In the mnotation of (1.2) and (1.3), we have Zn = Fn’ and Vn: L,
the Lucas numbers. The following result is an application of Theorem
1, where d = -c = 1:

Theorem 3, Define (see (2. 9))

2q q
2 . 2g-k 2 mk
(4.1) = qu)(—l/Z)yq = m (y - (-7, Ly +1)
k=0 k=1
(m,g=1,2,...).
Let nO:O,l,...; m,q = 1,2,...; and r = 0,1,...,q9. Then, for
n=0,1,..., we have
mrn 2q mrk , (2q) 2r
(4.2) (-1) k:.E—O (-1) by (-1/2) Hm(n+2q—k)+no
q
_ rng +(mq(gq+l)/2) 2r e d-T 12 T 2
= (-1) ( r) (-5) (H1 HoHl HO) kI=11 ka ,

2q
(4.3) (-1)TR 3 (o1)™mTER bfq) (-i/2) F

k=0

2r
m(n+2q—k)+n0

. q
- (_l)rno + (mq(q+1)/2) (er) (_5)(1 krzll FIZ-nk s



1965 = -
9 DEFINED BY Wn+2 de+l an 251

2q
(4.4) (-1 = (-1)mrkbfq) (-1/2) ernr(

k=0 n+2q-k)+nO

- (_1)rno+(mq(q+1)/2) (Zr) (_5)q (IZII FZ .
T m

k=1

Remarks. For the same values of r, n_, m, and ¢, the constant
term on the right-hand side of (4.4) is (-5)r times as great as the
constant term on the right-hand side of (4. 3)

In the examples given below, valid for n=0,1,..., wehave set

D= H? - HoHl - HCZ). Applications of D in the ordering of Fibonacci
sequences are given in 5] .
mn 2 2 2
(4.5) (-1) (Hm(n+2)+no - LZrnI_Im(rH-l)i-no * Hmn+no)
=210 pF? (m =0,1,...5m=1,2,...) ,
m o
4 4 4 4 4 2
(4. 6) Hn+4 —4Hn+3 ~19Hn+2 —4Hn+1 + Hn = -6D"
n, .2 2 2 2 2,
(4.7) (-1) (Hm_4 +4Hn+3 —lf)I—In_'_2 +4Hn+l +Hn) = 10D ,
3 3 3 3 3
(4.8) H_ ( Hoys ~4H o H g "1 o s M 0 o P H
= 3D2 ,
2 2 2 2 2 2 2 2 2.2 _ 2
(4.9) Ho g H g -4H, (3H g 198, o g m4H g Ho oy P HH =D
n, .6 6 6 6
(4.10) (-1) (Hn+6 _14Hn+5 _90Hn+4 +350Hn+3
6 6 6, _ 3
_90Hn+2 —14Hm+1 + Hn) = 80D ,
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4 . 4 4 4 .4
(4.11) Hn+6 + 14Hn+5 ~90Hn+4 A350Hn+3 “90Hn+2
+140*  +u* - s1200%
n+l n
n,_2 2 2 2 2

(4.12) (-1)™(H,, -14HT o -90HT , +350H, , -90H, ,

n+b6 4 2

2 £ 2 —
-14H_ , +H) = 200D ,

5 5 5 5
(4.13) Hn+6Hn+7 _14Hn+5Hn+6 _90Hn+4Hn+5 +350Hn+3Hn+4
5 5 5 B n 3
_90Hn+ZHn+3 _14Hn+lHn+2 * Han-i—l = 40(-1)"D ’
3 3 3 3 3 3 3 3
(4.14) H_ oHo g 14H gl L ~90H 4 Hyp $350 H3H 1y
3.3 3 3 3.3 ntl 3
S90 Ho oM pg 14H G H o f Han+1 = 20(-1) b
8 8 8 8 8

(4. 15) HnJ‘_8 -33Hn+7 -747 Hn+6 +3894 Hn+5 +16270 Hn+4

8 8 8 8 4

+ 3894 H_ . -747 H_,, -33H | +H_ =2520D" ,

6 6 6 6 6
(4.16) H_ o +33H> , -747 H - 3894 H _ +16270 H’ ,
6 6 6 6 n+l _3

-3894 Hn+3 -747 Hn+2 + 33Hn+l + H 3600(-1) D

n

Two identities, (4.6) and a special case of (4.5), with m=1 and

no = 0, have been given previously in [6] .
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n+2 n+l n

5. IDENTITIES FOR CHEBYSHEV POLYNOMIALS

Chebyshev polynomials [7, pp. 183-187] of the first kind, Tn(x),
and of the second kind, Un(x), are solutions of (1.1) when d = 2x and
c=1. Thus, W_=T (x) for W_=1, W, =x; W_= U _(x) for

n n o 1 n n
W =1, W, =2x; Z =1U (x); and V_ = 2T _(x).
o 1 n n-1 n n

We will now show that the Lucas functions Zn and Vn of (1.1),

where ¢ #0 and d # 0 are arbitraryrealnumbers, canbe expressed

in terms of Chebyshev polynomials as follows:

(5.1) z

. cn/ZUn(d/(Z\/E)) (n=0,1,...),

(5.2) v = 2c7/2 T (d/(2VE) (n

n

1
(=}
-
—
-
—

n+l
then multiply both sides by c(ntl)/2,  Thus, using (5.1), we have
Zo =0, Z1 =1, and Zn_[»2 = dZnJrl —cZn, n=0,1,....

n+2(X) = 2x Tn+1(X) - Tn(x), set x = d/(2 vc) and then

multiply both sides by 2¢(n+2)/2, Thus, using (5. 2), we have VO = 2,
Vl =d, and Vn+2 = an+1 —cVn, n=20,1,....

The following result is an application of Theorem 1, where
d=2x and c = 1:

Theorem 4. Define (see (2.9))

Proof. Since U (x) = ZxUn(x) - Un—l(x)’ set x=d/(2Ve) and

Since T

29 (2q) d

2q-k 2
(5.3) 3z b Uy = g (vy°-2T, . (x)y+1)(m,q=1,2,...).
k 2mk
k=0 k=1
Let n0=0,1,...; m,q=1,2,...; and r = 0,1,...,q. Then, for
n=20,1,..., we have

292 ) 2T

(5.4) k (X)Tm(n+2q—k)+no

i q d
=49 ash v

k=1
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2r
m(n+2q-k)

2

Umk-l(x)

2q
(5.5) = bLZq)(x)U
1

() = 49T (BT)(1-x%)97F
k=0 +no r

3.0

k

Remarks. Identities (5. 4) and (5. 5) yield trigonometric identities by
recalling thatif x = cos@, then Tn(cose ) = cos(nf )and Un(cose ) =
sin(n+l) 8/(sin@). Since sin(if) = isinh@® and cos(if)=coshf, ident-
ities for the hyperbolic functions are then obtained from the cor-
responding trigonometric identities. Additional complicated identities

can be obtained from (5. 4) and (5.5) by differentiation with respect to

x. Some sample identities, valid for n=20,1,..., are given below:
2 2 2
(5.6) Tm(n+2)+no (x) - 2TZm(X)’I‘m(n-I'l)+no (x) + mn+n (x)
2,..2 _
=2(l-x )Um_l(x) (m_l,Z,...,nO—O,l,...),

6 4

4 2, 4 4, 2
(5.7) Th, ) ~(1ex™-12x") T () + (64x°-96x +40x%-2) T2 ()

4 2.4 4 2 2.2
-(l6x " -12x )Tn+1(x) + T (x)= 24x (1-x7)" ,

(5. 8) Ti+4(x)Tn+5(x) -(16x4-12x2)Tf’1+3(x) T, ()

+(64x6-96X4+40x2-2)Ti_l_,(x) T, 5(x) - (1 6x4—12x2)Ti+1 (T, ()

3 3 2.2
+ Tn(x)Tn+1(x) = 24x7(1-x")

Let
Al (%) = 64x6 - SOX4 + 24X2 -2

10 6

Az(x) =1024x" " - 2304x8 +1792x" - 56Ox4 + 64x2 -1 s

A3(x) = 4096x12 - 12288x10 +14080x8 - 7552x6 + 1856x4 - 176x2 + 4

Then

)+ AT, () - ALl T

6 6
(5.9) T _,elx)- A ()T a3

nt5 (=

. Az(x)T2+Z(x) - Al(X)T2+1(x) + Ti(x) - 80x%(1-x%)2(4x%-1)%
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+2 n+l n
(5.10) Tf1+6(x) - AI(X)T§+5(X) +AZ(X)Ti+4(X) i A3(X)Ti+3(x)
4
+ AT () - AL GITL, () + Ta) = 96 (1-x7) (4P 1)2

(5.11) T2 ((ITo 206 = A )T ST (x) + A, ()T, ()T, ()

S ASBIT) 0T, 400 + A, T) G TR 360 = &) (TS (I T) ()

2

+ Ti(x)T ) = 1653 (252 43)(1-x0) (4xP-1)

|
n+1'¥
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OMISSION AND INFORMATION

The '"Factorization of 36 Fibonacci Numbers F, with n > 100" by
L. A. G. Dresel and D. E. Daykin should have included the following
references.

1. Dov Jarden Recurring Sequences, Israel, 1958, contains
many factorizations of first 385 L, and Fp. This is being reissued
soon and will be available again from the Fibonacci Association.

2. Brother U. Alfred and John Brillhart '""Fibonacci Century
Mark Reached'' FQJ, Vol. I, No. 1, p. 45, Feb., 1963.

3. Brother U. Alfred "Fibonacci Discovery' contains factors
of first 100 Fp and first 50 L,. See ad this issue page 291.

The factors available now allows one to factor higher Fibonacci Num-
bers since ¥, =L F .

Zn n" n
John Brillhart reports that in a short time he will have published a
report containing all the prime factors less than 230 of F, for
n < 2000 and of L for n <1000. This is exciting news.



