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1. Introduction

A kth-order linear recurrent sequence U = {un:n =1, 2, ...} of integers,
satisfying the following property for greatest common divisors:

(Mi, MJ') = lu(i’j)l for all 7:, J > 1,

is called a kfh-order strong divisibility sequence (SDS). The notion of strong
divisibility was introduced by C. Kimberling in [3] for k'M-order linear recur-
rences {u,:7n =0, 1, 2, ...}.

All the second-order SDS's have been described in [2]. A characterization
of all the SDS's in certain subsystems of the system 7 of all the third-order
linear recurrences of integers was given in [1]. The purpose of this note is
to extend the results of [1] and to describe all the SDS's in further
subsystems of 7.

Let U denote the system of all the sequences u = {u,: n =1, 2,...} defined
by

uy =1, up = v 20, ug=pn =0

Up+3 = A* Upyp + b Uy + o u,, formn 21,

where v, u, a, b, and ¢ are integers. The system of all the strong divisibility
sequences from U will be denoted by D.

Notice that we may take u; = 1 without loss of generality as all the third-
order SDS's with up, # 0 # ug are exactly all the nonzero integral multiples of
the sequences from D.

Lemma 1.1: Let u = {u,} €U. Then uy|u, if and only if there exists an integer
f such that

(1) c=fe+ev-a-u.

Proof: From the above definition we obtain uy = v, u, = ay + bv + ¢ and the
assertion follows.

2. The Case a =b =c¢ =1

Let V denote the system of all the sequences from U satisfying the condi-
tiona=b=¢ =1, i.e., u = {u,} €V if and only if
uy =1, up = v 20, ug = p =z 0
(2) 1 s 42 3
Up+3 = Upyp T Uyl + Uy, for n 2 1.
The following theorem will show that there are no SDS's in V.

Theorem 2.1: The system of sequences V contains no strong divisibility sequen-
ces, i.e., VnD = @. :

Proof: Let us suppose that u = {u,} €VND. By Lemma 1.1, there exists an inte-
ger f such that

(3) w=fev-1
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and thus
uy = ve (f+ 1).
Then by (2):
us =ve (f+2) +u and ug = ve (2f + 3) + 2p.

From up|ug, uz|ug, and (v, u) = 1, we get v|2 and u|2f + 3. Then, using
(3), we obtain:

v =1, ulS or\)=—l,u[1 or \)=2,u[4 or v = -2, u‘Z.

But v, u are coprime, which leaves 10 possible pairs of v and p. For all of
them it is easy to find 7, J (always < 9) such that (u;, uj;) = lu(i, j)l' There—
fore u¢ D, a contradiction.

3. The Case p=1; a=b =1

Let W denote the system of all the sequences from U satisfying the condi-
tions w=1; a=5b =1, i.e., u = {u,} €W if and only if

) uy =1, up = v =0, ug =1
Un+3 = Uy + Uy + Uy, for n = 1.
Furthermore, let W;, W, denote the following subsystems of W:
Wi =f{u€W:u|u, and f = -1}
Wy ={u€W:up|luy, and f = -1}
where f is the integer from (1). Obviously, W; and W, are disjoint and
DNWCWUW,.

Proposition 3.1: The system of sequences W; contains no strong divisibility
sequences, i.e., WiND = 0.

Proof: Let UEW, ND; then b + f = 0 and, according to Theorem 3.1 of [1], we
get u = c or u = d where

c=1{1,2,1,0,1,2,1,0, ...}, 4 ={1,-2,1,0,1,-2,1,0, ...}.
But ¢, d ¢ ¥ and thus u ¢ ¥;, a contradiction.

Lemma 3.2: Let u = {u,}€W,. Then:

(5) c=Ff+v -1,
(6) uy, =ve (f+1) =0,
(7) ¢ = =v -1 (mod |uyl|)-.

Proof: The assertion (5) follows from (1), the assertions (6) and (7) follow
from uy, = 1 + v + ¢, from (5), and from the definition of W,.

Lemma 3.3: Let u = {u,} €WoND, such that f # 0. Then v # -1.

Proof: Let us suppose that uewW,ND, f# 0, and v = -1. Then from (6) and (4)
we get 0 2 u, = ¢ and consequently

Un+3 = Upso + Upyp (mod |uy|), for m z 1.

Thus, ug = 3 (mod qul) and from Mqlug we obtain u, = ¢ = *1, *3. But

1=u¢ D (by Theorem 2.1), a contradiction
=-1=f=20 [by (5)], a contradiction

3 = (ug, Uyg) # l“ll =u ¢ D, a contradiction
-3 = (ug, u7) = |u1|=>u¢0l, a contradiction.

Q000
I

1992 99



STRONG DIVISIBILITY LINEAR RECURRENCES OF THE THIRD ORDER

Lemma 3.4: Let u = {u,} €W,. Then uy|ug if and only if
vZ v+ 5 (mod |f+ 1]).

Proof: Using (7) and (4) we get us 1

(8) ug = V(v + 2) (mod |uy|), uy

and, finally,

I

v = v2 (mod qul), then
-2v2 = 3v + 1 (mod |uyl)

ug = v(vZ = v = 5) (mod |uyl).
But by (6), uy = v+ (f + 1) and, therefore:
uy|ug if and only if v2 - v = 5 = 0 (mod |f + 1]).

Lemma 3.5: Let u = {u,} €W, such that uy|ug and wuy|u;,. Then
33v + 60 = 0 (mod !f + ll).

Proof: From (7) and (6) we obtain ¢ = -v - 1 (mod 'f + l|). Using this fact,
(8), Lemma 3.4, (4), and the assumptions uqlug, uq[ulz, we get:

ug = -3v = 5 (mod |f + 1]), u7 = =5v = 9 (mod |f + 1)),
0 (mod |f + 1)), ug = 6v + 11 (mod |f + 1|),

u1g = 25V + 45 (mod |f + 1]), wuy; = 31v + 56 (mod |f + 1[),
and, finally,

Hi
i

Usg

1

“12 = 33v + 60 = 0 (mod |f + 1]).

t

Proposition 3.6: Let u

{u,} €Wy such that u,|ug and uy|u;,. Then f + 1]135.
Proof: From Lemma 3.4, we get:
(9) 1089v? = 1089v + 5445 (mod |f + 1]).
Similarly, from Lemma 3.5, we get:
(10) 1089v2 = 3600 (mod |f + 1]);
(11) 1089v = -1980 (mod |f + 1]).
Now, from (9), (10), and (11) we obtain
3600 = 3465 (mod |f + 1))
and thus, f + 1[135.

Lemma 3.7: Let u = {u,}€W,. Then us = 0 and

(12) urg v (F3-5f2~-2f+ 1) + f2 - 4Ff - 6 (mod |usl|).
Proof: From (5), (6), and (4) we get:

(13) us = V2f + vf + 1.

If ug = 0, then vf « (v + 1) = -1 and thus, v+ 1 = *1, a contradiction. Fur-
thermore, by a direct computation from (4), using (5), we get:

(14) u10 = V3F3 4+ 6v3F2 + 10V2F2 + 6V2F + 10vF + v.

From (13) we get v2f = —vf - 1 (mod |us|); using this fact in (14), we obtain
(12).

Proposition 3.8: Let u = {u,} €W, such that ug|u;g. Then
us|f% - 133 + 34F2 + 38F + 1.
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Proof: Let us denote a = 3 - 5f2 - 2f 4+ 13 B = 2 = 4f - 6. Obviously,
(15) a? - Bf (o = B) = a?2(V2Ff + vf + 1) —= (va + B)(afv + F(a - B)).
Then from u5|u10, (12), (13), and (15), we obtain

usla? - Bf(a - B) = F* = 133 + 34Ff2 + 38Ff + 1

which completes the proof of the proposition.

Now, let us denote by #Z the following subsystem of the system W:
H={ueW:c = -1},

i.e., w€f if and only if u = {1, v, 1, v, ...}. It is obvious that HCW,.

Proposition 3.9: Let u = {u,} €¥,. Then uepD if and only if u€df.

Proof: 1f u€ H, then clearly ueD. Conversely, let u€D; then (by Proposition
3.6), f+ 1]135. From Lemma 3.4 and from the fact that the congruence v? =
v + 5 (mod 9) has no solution, we get lf + l| = 9, 27, 45, 135. Therefore, we
obtain for f the following eight possibilities: f = 0, 2, 4, 14, -2, -4, -6,
-16. Now:

(i) 1let f = 0, then by (5), ¢ = -1; thus, u = {1, », 1, v, ...} €4.
(ii) 1let f = 0 and let us denote 6 = f* - 13f3 + 342 + 38f + 1. The possible
values of f and the factorization of the corresponding § are given in the
table:

£l 2 4 14 -2 -4 -6 -16
§ | 53 112 9941 181 1481 5101 181 - 701

But us|8 (by Proposition 3.8), which gives us 38 possible pairs {f, us}. For a
given pair {f, us}, we obtain the value v from (13). Obviously, v must be an
integer and v # 0, -1 [by (4) and Lemma 3.3]. By a direct computation, we
obtain the following solutions:

f=2,v=1, 3, -2, 4, and f = 4, v =5, —6.

For f =2, v = -4, we get (uy, uji) # ]u1|; for =4, v =15, we get (us, Ug) #
|#1], and in the remaining cases we get v2 # v + 5 (mod |f + 1|) and, there-
fore, by Lemma 3.4, uq*ug. Thus u ¢ 0D, a contradiction.

The following theorem gives a complete characterization of all the strong
divisibility sequences in the system W.
Theorem 3.10: Letu€¥W. Then u is a strong divisibility sequence if and only
if ue d.
Proof: The assertion follows immediately from Propositions 3.1 and 3.9 and from

the inclusion DNWC W] UW,.
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At the request of Professor Lester Lange and with the permission of Profes-
sor Leonard Gillman, we have simply lifted Professor Gillman's delightful,
melodic note, below, from page 375 of the June-July 1982 issue of The American
Mathematical Monthly. Students need to know that the well-known limit
mentioned involves the golden mean.

Gerald E. Bergum
Editor

MISCELLANEA

77.

Leonid Hambro, the well-known pianist, told me recently that he was about
to enter a billiards tournament in which he would play 12 games; he knew the
opposition, he said, and he estimated his odds for winning any particular game
as 8 to 5. "What do you think your chances are of sweeping all 12 games?" I
asked him. '"They're pretty small," he said. "The probability that I'll win
any one game is 8/13. To find the probability that I'll win all 12 you have to
take 8/13 to the 12th power. That's a pretty small number."

He did not have a calculator in his pocket. But he had a pencil and a
pad—and an inspiration. ''Hey!" he said. '"Those are Fibonacci numbers. The
ratio of successive terms approaches a limit (about .618), and very fast: even
a ratio near the beginning like 8/13 is very close to the limit." He scribbled
some additions. "The 12th Fibonacci number after 8 is 2584. Therefore 8/13 to
the 12th power is approximately the same as 8/13 times 13/21 and so on, twelve
times; everything cancels out except the 8 in the beginning and the 2584 at the
end. So the probability that I will win all 12 games is about 8/2584, or about
1/300. See, I told you it was pretty small."

—Leonard Gillman
The University of Texas at Austin
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