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Let FQ = 0, Fi = 1, and Fn = Fn_i + Fn _2 for n > 2, denote the sequence of 
Fibonacci Numbers. For any modulus m > 2, and residue b (mod m) 9 denote by 
v(jn9 b) the number of occurrences of b as a residue in one (shortest) period of 
Fn (mod m). 

If m = 5 with k > 05 then Fn (mod 5k) has shortest period of length 4 * 5fe, 
and z;(5k, 2?) = 4 for all & (mod 5 k ) . This is so-called uniform distribution, 
and has been studied in great detail by a number of authors (e.g., [1]5 [4], 
[5]s [6]). However, the study of the function v(m9 b) for moduli other than 5 
is still relatively unexplored. Some recent work in this area can be found in 
[2] and [3]. 

In this paper we completely describe the function v(m9 b) when m = 2k
 9 k > 

1. What makes this possible is a type of stability that occurs when k > 5. 
This stability does not seem to appear for primes other than p = 2, 5 (which 
somehow is not surprising). Of course, the values of v(2k

9 b) for k = 1, 2, 3, 
4 are easily checked by hand. We include these values for completeness. 

Main Theorem 

For Fn(mod 2k), with /c > 1, the following data appertain: 

For 1 < k < 4: 

V{2, 0) = 1, 
V{2, 1) = 2, 
tf(4, 0) = y(4, 2) = 1, 
v(89 0) = v(8, 2) = y(16, 0) = tf(16, 8) = 2, 
i>(16, 2) = 45 

y(2fc, &) = 1 if b E 3 (mod 4) and 2 < k < 4, 
y(2fc, b) = 3 if fe = 1 (mod 4) and 2 < Zc < 4, and 
V(2k

9 b) = 0 in all other cases, 1 < k < 4. 

For fe > 5: 

if & E 3 (mod 4), 
if & E 0 (mod 8), 

i?(2fc, b) = < 3 , if fe = 1 (mod 4), 
if 2? E 2 (mod 32), 
for all other residues. 

Most of our proofs proceed either by induction, or by invoking a standard 
formula for the Fibonacci sequence. Perhaps there are other proofs of our 
Theorem, but because of the absence in the literature of a convenient closed 
form for Fn (mod 2k), our methodology is quite computational. Because of their 
frequent use, we record the following two standard formulas. 

Addition Formula: If m > 1 and n > 05 then 

Subtraction Forumla: If m > n > 0, then 
Fm-n = ("l)n + 1« (Fm^Fn - « _ ! ) . 
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The main body of t h i s p a p e r c o n s i s t s i n e s t a b l i s h i n g a number of c o n g r u -
e n c e s f o r Fn (mod 2k). 

Lemma 1: Le t k > 5 . Then 

F2k_3 . 3 _ ! E 1 - 2 ^ " 2
 ( m o d 2 * ) , 

F2k-3 . 3 E 2 ^ 1 (mod 2fe + 1 ) 

Proof: We prove these formulas simultaneously by induction on fe. When k = 5, 
the results are easily checked. Now assume the result is true for k > 5, and 
write 

F2k-3 . 3 - 1 = 1 - 2k~2u 

F2K-3 . 3 = 2k~lV 

where u, V E 1 (mod 4 ) . Note t h a t a s k > 5 , we have (fc - 2) + (k - 2) > fe + 1, 
and {k - 2) + (k - 1) > k + 2 . Thus , 

F 2*~ 2 • 3-1 = F2k~3 • 3-1+2*"3 • 3 

= F2
k~3 • 3 -2 F 2 k ~ 3 • 3 + F2k~3 • 3 - l F 2 k ~ 3 . 3+1 

= (2k~lv - 1 + 2k~2u)2k~lv + (1 - 2* : - 2 u)(2* : - 1 z ; + i - 2 ^ " 2 ^ ) 

= - 2 * " 1 ! ; + 2 ^ - ^ + 1 - 2k~2u - 2 k _ 2 w (mod 2k + l) 

E 1 - 2k~l (mod 2fc+1) 
and 

F 2 k " 2 -3 = F2k~3 • 3 + 2k-3 -3 
= (1 - 2/c"2u)2^-1i; + 2k"1z;(2?c-1i; + 1 - 2k~2u) 

E 2k~lv + 2k~lv (mod 2^ + 2 ) 

E 2^ (mod 2 f c + 2 ) . 

One consequence of this lemma is that Fn (mod 2k ) has shortest period of 
length 2k~l • 3. 

Lemma 2: Let k > 5 and s > 1. Then, 

F2*-3-3e-l ~ l " S * 2k~2 (mod 2 k )' a n d 

F2*~3 - 3s ~ S * 2k~l ( m o d 2 k )' 

Proof: Lemma 1 is the case s = 1. Now proceed by induction on s, by applying 
the addition formula and Lemma 1 to 

F2k~3 .3s-l = F2k~3 -3(8-1)-l+2k-3 • 3 a n d 

F2k-3 . 3s = F2
k~3 • 3(s -l) + 2k'3 • 3 " 

The details are omitted. 

Lemma 3: Let k > 5 and n > 0. Then, 

p n (mod 2 k ) i f n E 0 (mod 3 ) , 
Fn + 2k~2 - 3 "= 

\Fn + 2 ? c " 1 (mod 2fe) i f n = 1, 2 (mod 3 ) . 

Proof: By Lemma 1, 

^ 2 k - 2 . 3 E ° ( m o d 2?C) a n d F 2 k " 2 - 3 - 1 E 1 " 2k~l ( m o d 2 ^ -
Thus , 

Fn + 2k~2 -3 = Fn-lF2k~2 • 3 + Fn^F2k~2 -3 + F2k'2 • 3-l> 
E FnF2k~2 - 3 - 1 ( m o d 2 ^ E M l " 2 * " 1 ) ^ O d 2 f c ) . 

The result follows since Fn is even precisely when n = 0 (mod 3 ) . 
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In our subsequent work we will frequently have need of the residues of Fn 
(mod 4) and Fn (mod 6). We record one period of each here, from which the 
reader can deduce the requisite congruences: 

Fn (mod 4): 05 1, 1, 2, 3, 1 
Fn (mod 6): 0, 1, 1, 2, 3, 55 2, 1,3, 4, 1, 5, 0, 5, 5, 

4, 3, 1, 4, 5, 3, 2, 5, 1 

Lemma 4: Let k > 5 and n > 0 and assume n E 0 (mod 6). Then, 

Fn+2^ -3 E Fn + ^ " l (™d 2k) . 
Proof: Analogous to the previous proof. Note that n = 0 (mod 6) if and only if 
F„ = 0 (mod 4). 

Lemma 5: If n = 3 (mod 6), then Fn = 2 (mod 32). 

Proof: Write n = 6£ + 3 with t > 0; use induction on t together with an appli-
cation of the addition formula to 6̂(£ + l) + 3 = ^6(t + 3) + 6* 

Lemma 6: If n = 3 (mod 6) and k > 5, then for all s > 1, 

Proof: We treat the two cases ± separately. 

Case +: 

F2k-3-3s + n= F2k~3 . 3 s - A + F2k~3 « 3sFn+1 
E (1 - s • 2 k _ 2 ) F n + s - 2k~:L (mod 2fe) 

= Fn - s • 2 k _ 1 + s • 2 / c _ 1 (mod 2fe) 

E F n (mod 2 f c ) . 

Case -: Of course, we are tacitly assuming 2fc~3 * 3s - n > 0. We use the 
subtraction formula 

*2*-3.3a.-n« <-D n + 1 - ( V - 3 . 3 3 - A - V"3.3a^n-l) 

E (1 - s • 2 7 c " 2 )F n - s • 2k-~LFn_l (mod 2 k ) 

E Fn - s • 2 k _ 1 - s • 2 k _ 1 (mod 2 k ) 

E F n (mod 2 * ) . 

Lemma 7: I f n = 3 (mod 6) and fc > 6, t h e n , 
f „ + 2*-.3 E Fn + 2 k " 1 (mod 2fe) . 

Proof: By Lemma 1, w r i t e 

F2k-i+ o 3 = 2k~2 • u and F 2 *-f .. 3_ x = 1 - 2k~3 • z;, 

where w, f E 1 (mod 4 ) . Then, by t h e a d d i t i o n f o r m u l a and Lemma 5 , 

F x 0 k - ^ o = F T • 2k~2u + F „ ( 2 f e - 2 w + 1 - 2k~3v) 
n+ 2 • 5 n -1 w v 

E 2k'2u + 2k~lu + Fn - 2k~2V (mod 2k) 
E 2 k ~ 2 + 2 k " 1 + Fn - 2k~2 (mod 2k) 

E 2 k _ 1 4- F n (mod 2 k ) „ 

Proof of the Main Theorem 

We proceed by induction on k > 5. The result is easily checked for k = 5, 
so assume k > 5 and the Theorem holds for /c. 
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First, if b = 4, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30 (mod 32), then it is 
clear that y(2fc+1, b) = 0 since z;(25, 2?) = 0. 

Case 1: b E 3 (mod 4). Then y(2k, Z?) = 1, so choose n such that Fn E b 
(mod 2k) . Since 2? is odd, we have n E 1, 2 (mod 3). Now either Fn E b (mod 
2^ + 1) or Fn E 2? + 2fe (mod 2k + 1) . In the latter case, Lemma 3 gives 

Fn + 2k-1 -3=Fn+2k (mod 2/c + 1 ) ~ E 2? + 2k + 2fe (mod 2k + l) 

E Z> (mod 2fe + 1 ) . 

Therefore, V(2k+1, b) > 1 when 2? = 3 (mod 4). 

Case 2: 2? E 1 (mod 4). Then (2k, 2?) = 3, so choose 

0 < n1 < n2 < n3 < 2k~l • 3, 

with Fn. E b (mod 2 ) for all i . Then, as above, for each i , either 

Fn. E b (mod 2k + 1) or ^. + 2*-i.3
 E * (mod 2^ + 1 ) . 

So, y(2k + 1, 2?) > 3 when b E 1 (mod 4). 

Case 3: b E 0 (mod 8). Then ^(2fe, 2?) = 2, so let 

0 < m < n < 2k~1 -3 

be such that Fm E Fn E b (mod 2fc). Note that as Fm E Fn E 0 (mod 4), we have 
m E n E 0 (mod 6), so Lemma 4 applies. In particular, 

^ + 2*-2-3 E Fm (mod 2 " ) ' 
from which it follows that m < 2k~2 • 3 and n = m + 2k~2 • 3. 

If Fm E 2? (mod 2 ^ + 1 ) , then by Lemma 3, 

^OT+2*-i.3 E
 b ( m o d 2 ? C + 1 ) ' 

so v(2k+l, b) > 2. Otherwise, we must have 

Fm E b + 2k (mod 2f c + 1). 

But then by Lemma 4, 

Fn = F
m+2k'2 .3EFm + 2k ( m o d 2 * + 1 ) = & (mod 2 * + 1 ) , 

and a l s o , 
^ + 2 , - i . 3 E Fn E b (mod 2* + l ) . 

We conclude that v(2k+l, b) > 2 when b•= 0 (mod 8). 

C a s e 4 : 2? E 2 (mod 3 2 ) . Assume t h a t z ; (2* , 2?) = 8 . L e t Fn E b (mod 2k) , 
w i t h n < 2 / c _ 1 • 3 . Then Fn E 2 (mod 4 ) , so t h a t n = 3 (mod 6 ) . Now e i t h e r 

Fn E b (mod 2k + l) o r F n E 2? + 2^ (mod 2k + l) . 

In the latter case, by Lemma 7 we have 
Fn + 2^3.3 = ̂  + 2* = 6 (mod 2k + l). 

Thus, there is at least one index 0 < m < 2k • 3 such that Fm E b (mod 2f e + 1). 
But now, by Lemma 6, 

F2*-Z-3s±m = Fm = b (mod 2^ + 1) f o r S = 4, 5, 6, 7. 
Since these eight solutions all occur in one period of Fn (mod 2 ^ + 1 ) , we con-
clude that v(2k+1, b) > 8. 

Conclusion: We have established inequalities in each case of the Theorem. 
The proof follows from a straightforward computation, using the fact that Fn 
has shortest period of length 2k • 3 modulo 2* + 1, and the obvious identity: 
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]T v(2k+1, b) = 2k • 3. 
b(mod 2k+l) 

Using the main Theorem of [2], we are now able to describe the distribution 
of Fn (mod 2k • 5J'). Indeed, 

Theorem: For Fn (mod 2fe • 5J) with k > 5 and j > 0, we have 

y(2k • 5J', fc) = 

1, 
2 , 
3 , 
8, 
0 , 

i f b = 3 (mod 4 ) , 
i f 2? E 0 (mod 8 ) , 
i f b E 1 (mod 4 ) , 
i f 2? E 2 (mod 32) , 
f o r a l l o t h e r r e s i 
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