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1. Introduction and Generalities 

One of the most important problems to be faced when using public-key cryp-
tosystems (see [7] for background material) is to generate a large number of 
large (> 10100) prime numbers. This hard to handle problem has been elegantly 
by-passed by submitting randomly generated odd integers n (which are, of course, 
of unknown nature) to one or more -probabilistic primality tests. If n fails a 
test, then it is surely composite, whereas, if n passes the tests, then it is 
said to be a probable prime and is accepted as a prime. More precisely, the 
term "probable prime" stands for prime number candidates until their primality 
(or compositeness) has been established [6, p. 92]. 

In [2] we proposed a simple method for finding large probable primes. To 
make this paper self-contained, we recall briefly both this method and the def-
initions given in [2] and [3] of which this paper is an extension. 

Let the generalized Lucas numbers Vn(m) (or simply Vn) be defined as 

(1.1) Vn = an + $n, 

where 

(a = -1/3 = (jn + A)/2 

lA = (m2 + 4 ) 1 / z . 

It is known (e.g., see [2]) that the congruence 

(1.3) Vn = m (mod n) 

holds if n is prime. In [2] we analyzed some properties of the m-Fibonaoci 
Pseudoprimes (m-F.Psps.) , defined as the odd composites satisfying (1.3) for a 
given value of m9 and proposed to accept an integer n of unknown nature as a 
prime if (1.3) is fulfilled for m = 1, 2, ..., M, where M is an integer somehow 
depending on the order of magnitude of n. 

The above mentioned method is rather efficient from the point of view of 
the amount of calculations involved but traps are laid for it by the existence 
of M-strong Fibonaooi Pseudoprimes (M-sF.Psps.) defined in [3] as the odd com-
posites n which satisfy (1.3) for 1 < m < M. 

A correct use of this method for cryptographic purposes would imply the 
knowledge of the largest M for which at least one Af-sF.Psp. exists below a 
given limit (say, 10 1 0 0 ) . An attempt in this direction is made by the authors 
in this paper (see also [3]) by finding formulas for generating M-sF.Psps. for 
arbitrarily large M (section 3). In section 4 some numerical results are pre-
sented from which we could get the hang of the order of magnitude of such lar-
gest value of M. 

2. Preliminaries 

Let us rewrite the quantity A [cf. (1.2)] as 

(2.1) A = (fl 2dp°Al/2 = n 2 S P ^'(FI 2 r p ^ V / 2 W e {0, 2, 3}; r, c- e{0, 1}), 

where p. are distinct odd primes. Both the power to which they are raised in 
the canonical decomposition of A2 and the value of d depend, obviously, on m. 
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First, we state the following lemmas. 

Lemma J; p. is of the form 4fe + 1 (k e M = {1, 2, . . . }) for any j (and m) . 
Proof (reductio ad ahsurdum) : Let us assume that the congruence 
(2.2) A2 = m1 + 4 = 0 (mod 4^+3), 

where 4fe + 3 is a prime, holds. The congruence (2.2) implies that rri2- = -4 (mod 
4fc + 3), that is, it implies that -4 is a quadratic residue modulo 4fc + 3. 
Now, by using the properties of the Legendre symbol, we have 

Uk + 3) Ufe + 3/ Ufc + 3A4fc + 3/ ( i; 1 1 , 

which contradicts the assumption. Q.E.D. 

Lemma 2: p. is a quadratic residue modulo any prime of the form kp. + 1. 
3 V 

Proof: From Lemma 1 and [4, Th. 99, p. 76], we can write 

Then, let us state the following 

Theorem 1: Let q€ be odd rational primes such that [cf. (2.1)] 
(2.3) q. = 1 (mod 8* ft p?3) 

and let 

(2.4) « - f I ? t ? ( a e {0, 1}) 
i 

be an odd (square-free) composite. Moreover, define A(n) as 
(2.5) A(w) = lcm(^ - 1). . 

If ft - 1 E 0 (mod A(ft)), then 7n = w (mod ft), that is ft is an w-F.Psp. 

Proof: By considering congruences defined over quadratic fields [4, Ch. XII], 
from the definition of a and (2.1) we have 

2« = m + n 2s
P^(n2rpf)1/2 

j J V 3 J ! 

whence, due to the p r ima l i t y of q.9 the congruence 
(2.6) (2a)?i = 2^a?i = m** + ( i j^ 'p / ' )* ' ( [J 2*p/') * f / 2 (mod ^ ) 

can be written. By using Fermatfs little theorem, (2.6) becomes 

(2.7) 2a« i m + J! ̂ ' ( l l 2 ^ ' ) ( ^ "1)/2 ( II 2 ^ f ' 1 (mod <?.). 
3 3 3 

From (2.3), Lemma 2, and [4, Th. 95, p. 75], (2.7) can be rewritten as 

2a^ E 77Z + fl 25p^'(n 2rp^')1/2 = 2a (mod ^ ) , 

whence, we have 

(2.8) aqi E a (mod ^ ) , a^'1 E 1 (mod ^ ) . 

By hypothesis [i.e., ft - 1 = 0 (mod ̂  - 1)] and (2.8), we have 

an~l E 1 (mod ̂ ) 

and, consequently, 

an_1 E 1 (mod fl 3^) (i-e., mod ft), 
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whence 

(2.9) an = a (mod n). 

Analogously, it can be proved that 

(2.10) gn E 3 (mod n). 

Finally, from (2.9) and (2.10) we have 

Vn(jri) = an + 3n = a + 3 = m (mod n) . Q.E.D. 

3. Generating M-sF.Psps. 

In this section a simple method for generating M~sF.Psps., which are also 
Carmichael numbers, is discussed. 

Let us consider any expression [5, p. 99] of the form 
h h 

(3.1) n(T) = n 0<-iT + 1) = IlPi (h * 3; ki9 T e M) 
i= 1 i= 1 

which gives Carmichael numbers n(T) for all values of T such that P^ (i = 1, 2, 
... , 7z) is prime. 

For n(T) to be an m-F.Psp. by Theorem 1, we must impose that 

(3.2) P. = 1 (mod 8r n Py- (™)) (i = 1, 2, ..., /-z), 
j 

where [cf. (2.1)] the primes p-(m) (with Oj = 1) are all distinct odd primes 
which appear in the canonical decomposition of m2- + 4 raised to an odd power 
and v = 1 (0) if d = 3 (*3), that is, if m - 2 is (is not) divisible by 4. 

Due to the particular structure of the factors P^ , (3.2) can be fulfilled 
by simply imposing that 

(3.3) T = 8Pfl p. (m)t ( t eiN) 
so t ha t 

(3.4) n(t) = n ^ = n (fei8rn R - W ^ I)-
i = 1 i = 1 x j J ; 

Recalling that the congruence n(t) - 1 E .0 (mod lcm (P̂  - 1)^ ) holds by con-
struction, Theorem 1 ensures that n(t) is an m-F.Psp. (and a Carmichael number) 
for all values of t such that P^ is prime (i = 1, 2, ..., h). 

Now, it is clear that if we wish to construct an M-sF.Psp. (A? > 2), we must 
simply multiply 8/q by the least common multiple of all distinct primes p. (jn) 
(m = 1, 2, ..., M). 
( 3 . 6 ) CM = l c m ( p . (TT?))^^ 

1 < m < M 

t hus , g e t t i n g the number 
h 

( 3 . 7 ) nM{t) = J! Wukit + 1) 
i = 1 

which is an M-sF.Psp. (and a Carmichael number) for all values of t such that 
all the h factors in the product (3.7) are prime. 
An Important Remark: An Af-sF.Psp. constructed by using the above method may 
be an (M + a)-sF.Psp. (a > 1) as well. For this to happen (see also [2, Th. 
6]) it suffices that either 
(3.8) ^M + a = ^M 
or 
(3.9) t0 E 0 (mod lcm(pj- (???))j, M+l<m<M+a) > 
where t0 is any value of t such that [cf. (3.7)] 86^/qt + 1 is prime (i = 1, 2, 
..., h). 
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It should be noted that a so-obtained M-sF.Psp. may be an (M + a)-sF.Psp. 
even though (3.8) and/or (3.9) are not satisfied. This fact will be investi-
gated in a further work. Some numerical examples of the said occurrences will 
be shown in section 4. 

4. Numerical Results 

Some simple expressions of the form (3.1) are 

(4.1) n(T) = (6T + 1)(12T + I)(1ST + 1), 

(4.2) n'(T) = n(T)(36T + 1), 

(4.3) n"(T) = (12T + 1)(24T + 1)(36T + I)(12T + 1)(144T + 1). 

A computer experiment to find M-sF.Psps. was carried out on the basis of 
the simplest among them [namely, (4.1)] which was discovered by Chernick [6] in 
1939. 

According to the procedure discussed in section 3 [cf. (3.7)], we see that, 
since for m = 1 we have A = v5, the numbers 

(4.4) n2(t) =(5 • 8 • 6t + 1)(5 • 8 • lit + 1) (5 • 8 • 18£ + 1) 

= (240£ + l)(480t + l)(720t + 1) 

are 2-sF.Psps. (and Carmichael numbers) for all values of t such that all three 
factors on the right-hand side of (4.4) are prime. The smallest among them is 
n2(20) = 663,805,468,801. 

Following this procedure, we sought numbers nM(t) (M = 3 , 4, ...) which are 
A/-sF.Psps. not exceeding 101 0 0. 

The number of digits (//d) of the smallest Af-F.Psps. found in this way is 
shown against M in Table 1. 

Table 1 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

#d 

8 
12 
16 
16 
18 
18 
29 
29 
29 

M 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

#d 

29 
29 
36 
45 
45 
51 
51 
51 
65 
71 

M 

29 
21 
22 
23 
24 
25 
26 
27 
28 
29 

#d 

76 
61 
61 
61 
61 
61 
61 
95 
98 
98 

By means of our experiment we could not find any 30-sF.Psp. below 101 0 0. 
Just as an illustration, and for the delight of lovers of large numbers, we 

show the smallest (98 digits) 29-sF.Psp. found by us: 

41,703,652,779,296,795,260,673,920,462,490,602,986,625,330,278,308, 
957,565,652,181,464,065,185,928,126,878,406,976,583,823,233,761. 

This remarkable number is, as previously mentioned, also a Carmichael number. 
Its canonical factorization (three 33-digit prime factors) is available upon 
request. This number [namely, ?I2Q(23)] has been constructed to be a 28-sF.Psp. 
[see An Important Remark above and paragraph (vi) of the Remark below). The 
authors would be deeply grateful to anyone bringing to their knowledge a 29-
sF.Psp. smaller than n23(23) and/or a 30-sF.Psp. < 101 0 0. 
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Remark: It must be noted that (cf. Table 1), due to the fulfillment of (3.8), 

(i) the numbers n3(£) [cf. (3.7)] which are 3-sF.Psps. are 4-sF.Psps. as 
well s 

(H) the numbers n5(t) which are 5-sF.Psps. are 6-sF.Psps. as well, 

(Hi) the numbers n8(£) which are 8-sF.Psps.. are 11-sF.Psps. as well, 

(iv) the numbers n15(t) which are 15-sF.Psps. are 16-sF.Psps. as well, 

(v) the numbers n22(t) which are 22-sF.Psps. are 26-sF.Psps. as well, 

(vi) the numbers n2s(t) which are 28-sF.Psps. are 29-sF.Psps. as well. 

Moreover, due to the fulfillment of (3.9), the smallest n2i(t) which is a 21-
sF.Psp. [namely, n2i(488)] is a 22-sF.Psp. Therefore, by (v) , it is a 26-
sF.Psp. as well. 

Finally, the smallest n^5(t) which is a 15-sF.Psp. [and, by (iv), a 16-sF.-
Psp.] is, rather surprisingly, a 17-sF.Psp. This number [namely, ^15(378)] has 
51 digits and is the smallest 17-sF.Psp. with which we are acquainted. 
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Addendum 

Professor W. Miiller (Universitat Klagenfurt, Austria) communicated to us 
that on March 30, 1992, Dr. R. Pinch (University of Cambridge, UK) proved the 
existence of the ° o-spspSpSo These exceptional numbers satisfy the congruence 
(1.3) for all values of the parameter m. The smallest among them is 

443372888629441 = 17 • 31 • 41 • 43 • 89 • 97 • 167 • 331. 
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