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1. Some Preliminaries 

Let G be a finite graph. A perfect matching in G is a selection of edges 
in G such that each vertex of G belongs to exactly one selected edge. There-
fore, if the number of vertices in G is odd, then there is no perfect matching. 
We denote by K(G) the number of perfect matchings of £, and refer to it as the 
K number of G. 

By a polygonal chain Py, s we mean a finite graph obtained by concatenating 
s k-gons in such a way that any two adjacent fc-gons (cells) have exactly one 
edge in common, and each cell is adjacent to exactly two other cells, except 
the first and last cells (end cells) which are adjacent to exactly one other 
cell each. It is clear that different polygonal chains will result, according 
to the manner in which the cells are concatenated. 
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Figure 1 shows a hexagonal chain P5jll. The LA-sequence of a hexagonal 
chain is defined in [11] as follows. A hexagonal chain P6j s is represented by 
a word of the length s over the alphabet {A> L}. The i t h letter is A (and the 
corresponding hexagon is called a kink) iff 1 < i < s and the i t h hexagon has 
an edge that does not share a common vertex with any of two neighbors. 
Otherwise, the i t h letter is L. For instance, the hexagonal chain in Figure 1 
is represented by a word LAALALLLALL9 or, in abbreviated form LA2LAL^AL2. The 
LA-sequence of a hexagonal chain may always be written in the form 

P6<#1, . .., xn> = LXlALx^A ... ALXn
9 

where xl > 1, xn > 1, xi > 0, for i = 2, 3, . . . , n - 1. For instance, the LA-
sequence of the hexagonal chain in Figure 1 may be written in the form 

P6<1, 0, 1, 3, 2> = LAL°ALAL3AL2
B 

It is well known that the number of a hexagonal chain is entirely determined 
by its M-sequence, no matter which way the kinks go ([1], [10], [12]). In [1] 
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the term "isoarithmicity" for this phenomenon is coined. Thus, 

P6<a;1, x , . . ., xn> 

represents a class of isoarithmic hexagonal chains. 
Figure 2 above shows a square chain £\, n- We introduce a representation 

of square chains in order to establish a mapping between square and hexagonal 
chains that will enable us to obtain the K numbers for square chains. A square 
chain P^t8 is represented by a word of the length s over the alphabet {A, L}, 
also called its LA-sequence. The i t h letter is A iff each vertex of the ith 

square also belongs to an adjacent square. Otherwise, the ith letter is L. 
For instance, the square chain in Figure 2 above is represented by the word 
LAALALLLALL, or, in abbreviated form LAZLAL3AL2. Clearly, the L4-sequence of a 
square chain may always be written in the form 

Ph<xl9 ..., xn> = LXlALXzA ... ALXn, 

where Xi > 1, xn > 1, xi > 0, for i = 2, 3, ..., n - 1. For example, the LA-
sequence of the square chain in Figure 2 may be written in the form 

PLf<l3 0, 1, 3, 2> = LAL°ALAL3AL2. 

We show below that all square chains of the form 

L L±\X J , a a a a Xy^/ 

are isoarithmic. 
We will draw pentagonal chains so that each pentagon has two vertical edges 

and a horizontal one which is adjacent to both vertical edges. The common edge 
of any two adjacent pentagons is drawn vertical. We shall call such a way of 
drawing a pentagonal chain the horizontal representation of that pentagonal 
chain. From the horizontal representation of a pentagonal chain one can see 
that it is composed of a certain number (>1) of segments; namely, two adjacent 
pentagons belong to the same segment iff their horizontal edges are adjacent. 
We denote by 

i C\X] , Xo* • a . , Xyi' 

the pentagonal chain consisting of n segments of lengths #]_, #£» •••»#«» where 
the segments are taken from left to right. Figure 4a below shows 

P5<3, 2, 4, 8, 5>. 

Notice that one can assume that X\ > 1 and xn > 1. 
Among all polygonal chains, the hexagonal chains were studied the most ex-

tensively, since they are of great importance in chemistry, namely, benzenoid 
hydrocarbon chains. Each perfect matching of a hexagonal chain corresponds to 
a Kekule structure of the corresponding benzenoid hydrocarbon. The stability 
and other properties of these hydrocarbons have been found to correlate with 
their K numbers. The classical paper [10] contains a general algorithm for the 
enumeration of Kekule structures (Z numbers) of benzenoid chains and branched 
catacondensed benzenoids. The algorithm is modified in [6]. An alternative 
derivation for the case of unbranched chains is described in [4]. In [17] 
Tosic proposed an algorithm of time complexity 0(n) for calculating the number 
of Kekule structures of an arbitrary benzenoid chain composed from n linearly 
condensed segments. The explicit formulas, in terms of the Fibonacci numbers, 
for the number of Kekule structures for a zigzag chain were given in [20], [3], 
and [5]. We will re-derive the formula for K numbers of zigzag chains as a 
special case of a new general formula. A treatise on three connections between 
Fibonacci numbers and Kekule structures is presented in [2] and [15]. A 
procedure for producing algebraic formulas for the K number of an arbitrary 
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catacondensed benzenoid is elaborated in [1]. Two different explicit formulas 
for the K number of an arbitrary benzenoid chain are given in [18] and [19]. A 
whole recent book [7] is devoted to Kekule structures in benzenoid hydrocar-
bons. It contains a list of other references on the problem of finding the 
"Kekule structure count" for hydrocarbons. 

In [14] Gutman & Cyvin investigated the connection between the square and 
hexagonal chains, and derived the number of a graph QPtqS which is a chain 
composed of p + q + 1 squares, and, in our notation, is denoted by 

LA?-lLAq-lL: K(Qp> q) = Fp + q+2 + Fp + 1Fq + 1. 
In the present paper, we investigate the K number of an arbitrary square chain; 
the above formula will follow as a special case of a general result. 

In [8] and [9] Farrell investigated the K numbers of pentagonal chains of 
particular forms. The obtained results are special cases of a general formula 
which will be deduced here. 

2. K Numbers of Hexagonal Chains 

Recently Tosic and Bodroza [18] proved a recurrence relation and a formula 
for the K numbers of hexagonal chains using a notation that counts every kink 
twice. Motivated by the possibility of mapping square and pentagonal chains to 
hexagonal ones, here we use a different notation that leads to a new recur-
rence relation and formula. The proofs are omitted because they can be 
obtained along the same lines as the proofs of Theorems 1 and 2 from [18]. 

The K formula for a single linear chain (polyacene) of X\ hexagons, i.e., 
P§<Xi> is deduced in [10] and [7]. We define Pg< > as the hexagonal chain with 
"no hexagons." 

Theorem 1: Z(P6< >) = 1, K(P&<xl>) = 1 + xx, 

Z(P6<xl5 ..., xn.l9 xn>) = (xn + l)K(Ps<Xi, ..., ffn-i>) 

+ Z(P6<xl3 ..., xn.2>) for n > 2. 

Theorem 2: Z(P 6 <x l 3 . . . , xn_ls xn>) = 

Fn+l + S 
0 < il < ... <ik<ni i <k<n 

Fn+l-iji,-^ - • • • F*:-.- *"-• *-• *-• k H ~ lk-1 2 - 2 - ^ 1 2-1 i \ 2-2 

3. K Number of a Square Chain 

H 

Theorem 3: K(P^<xls 

3 4 

. ^ B * 
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Proof: Referring to Figure 3, it is easy to see that if in a square chain some 
(or all) structural details of the type A, B, and C are replaced by A*, B* , and 
C*, respectively, the K number will remain the same. By accomplishing such 
replacements, each square chain can be transformed into a hexagonal chain with 
the same M-sequence. Therefore, a square chain and corresponding hexagonal 
chain represented by the same Li4-sequence have the same K number. For example, 
the square chain in Figure 2 can be transformed into the hexagonal chain in 
Figure 1. Note that the corner squares of a square chain correspond to the 
linear hexagons, and vice versa, in this transformation. D 

Thus, the K numbers for square chains are also given by Theorem 2. It is 
clear that all other properties concerning the K numbers of square chains can 
be derived from the corresponding results for hexagonal chains and that the 
investigation of square chains as a separate class from that point of view is 
of no interest. 

Note that the formula 

K(Qp, q) = Fp + q+2 + Fp+lFq + l 

of Gutman & Cyvin [14] for the chain LA9 LAq L can be derived from Theorem 2 
as a special case. Namely, in the M-sequence of Qp qi we have 

n = p + q - l ; Xi=xp=xp+q_i=l; xi = 0 for i * 1, p, p + q - 1, 
and 

K(Qp,q) = Fp+q + Fp+q -lFl + Fq FV + FlFp+q~l + FqFp-\F\ + F\Fp+q-2F\ 

+ FiF^Fp + F1Fq.lFp„lFl 

= (Fp + q + 2Fp + q . l + Fp + q_2) + (Fp + Fp-!)Fq + (Fp + Fp_l)Fq_l 

= Fp+q+2 + Fp+lFq + Fp + lFq-l 
= Fp+q + 2 + Fp + lFq + l* 

K Number of a Pentagonal Chain 

First, recall a general result concerning matchings of graphs. Let G be a 
graph and u9 x9 y, V its distinct vertices, such that ux, xy, yv are edges of 
G, u and V are not adjacent, and x and y have degree two. Let the graph H be 
obtained from G by deleting the vertices x and y and by joining u and v, 
Conversely, G can be considered as obtained from H by inserting two vertices (x 
and y) into the edge of uv. We say that G can be reduced to H, or that G is 
reducible to H; clearly K(G) = K(H) [13]. 

Theorem 4: If Xi + x2 + • • • + %n is odd, then 

K(P5<xl9 ..., xn>) = 0. 

Otherwise (i.e., if the sequence ^ j , x2, ...5 xn contains an even number of odd 
integers), let 

s(j'l), sUz)> •••» s(jt) (Ji < J2 < •"' < J*) 

be the odd numbers in the sequence 

S(P) = xl + -•• + xP (r = 1, 2, ..., ri), 

and let s(j0) = -1 and s(jt+1) = sn + 1; then 

Z(P5<o;1, ..., xn>) 

= ^t + 2 + E (Ft + 2.ir)/2* YlisUi) ~ s ( i - i ) - 2)F, , £ _ r 
o = i 0 < ^ 1 < . . . <ir < t+1 r £ = i £ £ 

1< r<t+ 1 
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Proof: Clear ly a pentagonal chain cons i s t i ng of p pentagons has 3p + 2 v e r t i c e s . 
Hence, a pentagonal chain with an odd number of pentagons has no pe r fec t match-
ing. Therefore, we assume t h a t i t has an even number of segments of odd 
l eng th . 

(a) oT 1 

(b) 

nrm 
Figure 4 

Consider a horizontal representation of P<X]_, x2s . .., xn> (Fig. 4a). Label 
the vertical edges 0, 1, . . . , sn, from left to right. Clearly no edge labeled 
by an odd number can be included in any perfect matching of P$<Xi, x2, . ..> xn> 
since there are an odd number of vertices on each side of such an edge. By 
removing all edges labeled with odd numbers, we obtain an octagonal chain 
consisting of sn/2 octagons (Fig. 4b). This octagonal chain can be reduced to 
a hexagonal chain with sn/2 hexagons (Fig. 1). It is evident that in the 
process of reduction, each octagon obtained from the two adjacent pentagons of 
the same segment becomes an L mode hexagon, while each octagon obtained from 
the two adjacent pentagons of different segments becomes a kink. The number of 
kinks is t, since each kink corresponds to an odd s(r). It means that this 
hexagonal chain consists of t + 1 segments. Let y^ be the number of L mode 
hexagons in the ith segment. Then 

2/1 = (s(Ji) - l)/2 = (sUi) - s(j0) - 2)/2 

ht+l = (s(n) " s^'t) - D/2 =(s(jt+i) - sUt) - 2)/2, 

and, for 2 < i < t , 

yt = (s(j{) - s(Ji-i) - 2)/2. 

Since reducibility preserves K numbers, it follows that 

K(P5<xl9 x2, ..., xn>) = Z(P6<z/l5 y 2 , ..., y t + i>) 
r 

= Ft + 2 + . . ]£ . Ft+2-ir FI yi^i.-ii-i > 
0=^o<^l<•••<^ r,<t+l £ = 1 

1 <r<t+ 1 

which gives, by taking into account the values for y^9 the expression in Theo-
rem 4. • 

Now we shall consider some special cases of Theorem 4 in order to derive 
some useful consequences. As a first specialization, we shall take the regular 
pentagonal chains, defined as follows. If all segments of a pentagonal chain 
are of the same length m(xi = x2 = • • • = %n

 = m)» w e s aY that it is a regular 
'pentagonal chain and denote it by P$<mn> (similar notation will be used for a 
regular subchain of a chain). 

Theorem 5: Let m and n be positive integers, m odd and n even > 6. Then 

K(P5<mn>) = (m + l)2(Fn/2 + Q{n.2) 2{m - l))/4 + (m + D(F{n.2)/2 

+ Q{n-h)l2^ ~ D ) + F{n-h)l2 + S(n-6)/2<> " D» 
where r+l 

1n{m) = X mVX\FH-i,-Y for n > 1 and «0(77z) - 0. 
0= iQ < ii < • •• < ir < ir+i < n+ 1 £=1 

1 < p < n 
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Proof: Let m = 2k + 1, n = 2p. Then t = p + 1 and ̂ x = z/p + i = k9 y^ = 2fe, for 
-£ = 2, 3, . . . , £. Hence 

Z(P5<mn>) = K(P5<k, 2kp~1, k>). 

Applying Theorem 1 and property Z(P5<#1, . .., xn>) = K(P5<xn, . .., #i> ) we obtain 

K(P5<k, 2kp~l, k>) = (k + l)K(P5<2kp~l, k>) + Z(P5<2fep~2, k>), 

Z(P5<2£cp_1, fc>) = (fc + l)Z(P5<2fep"1>) + Z(P5<2fcp~2>), 
an d Z(P5<2kp~2, fe>) = {k + l)Z(P5<2kp~2>) + Z(P5<2fcp~3>). 
It follows that 

K(P5<k9 2kp'1f k>) = (k + 1)2Z(P5<2^P"1>) + 2(k + l)Z(P5<2kp~2>) 

+ Z(P5<2fcp~3>). 
Thus, 

K(P5<mn>) = l/4(m + l)2Z(P5<w - i(*-2)/2>) + (m + l)Z(P5<w - i("-̂ )/2>) 
+ K(P5<m - i(^-6)/2>)8 

The statement follows by applying Theorem 2. Q 

We note that all results by Farrell in [9] and other papers concerning the 
numbers of perfect matchings of pentagonal chains are very special cases of 
Theorem 5 (which is a special case of Theorem 4). 

Corollary 1: K(P5<l2k>)' =* Fk + 2. 

Proof: Follows as a special case of Theorem 5 when m = 1. Then, obviously, 
Qn{l) = 0 and we have, for n = 2k9 

K(P5<1^>) = Fk + 2Fk.x + Fk.2 = Fk + 2. 0 
Clearly, in this special case, the process of reduction results in a zigzag 

hexagonal chain, with the M-sequence LAk~2L. This is in accordance with the 
previously known result for the number of zigzag hexagonal chains derived in 
[20], [3], and [5]. 

Corollary 2: Let Xi, x2, . .., xn be all even positive integers, n > 1. Then 
K(P5<xl3 ..., xn>) = (xl + ••- + xn)/2 + 1. 

Proof: Since all partial sums s(r) in Theorem 4 are even, no kink is obtained 
in the process of reduction to a hexagonal chain. Thus, a linear hexagonal 
chain consisting of h = (x\ + x2 + sse + xn)/2 hexagons is obtained (i.e., 
Pe<h> = Lh). According to [7], we have K(P6<h>) = h + 1; hence, 

K(P5<xl9 ..., xn>) = h + 1. D 

In the special case of Corollary 2, when n = 1, we obtain a uniform penta-
gonal chain, i.e., a pentagonal chain consisting of only one segment. Several 
results concerning the matchings of the uniform pentagonal chains, including 
the Z number, are deduced in [8] by application of matching polynomials, which, 
in the case when the perfect matchings are in question, is a very involved 
technique. Here we generalize the result by deriving the formula for the Z 
number of an arbitrary pentagonal chain, using a much simpler technique. 

Corollary 3: Let m be an odd positive integer >1. Then 

K(P5<m2>) = (m2 + 2m + 5)/4; Z(P5<wLf>) = (m3 + 2m2 + 5m + 4)/4. 
Proof: Follows as a special case of Theorem 5. 
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