SYMMETRIC FIBONACCI WORDS*

Wai-fong Chuan
Department of Mathematica, Chung-yuan Christian University, Chung Li, Taiwan 32023, Republic of China
(Submitted September 1991)

In [1] the author studied Fibonacci words; the study was motivated by the consideration of Fibonacci strings and Fibonacci word patterns by Knuth [5] and Turner [6, 7], respectively. It was shown in [1] that all the $n^{\text {th }}$ Fibonacci words can be obtained from any particular $n^{\text {th }}$ Fibonacci word, for example w_{n}^{0}, by shifting in a cyclic way the letters in it. Also it was shown that each of the Fibonacci words $w_{n}^{0}(n \geq 3)$ has a representation as a product of two symmetric words. In this paper, we show that every Fibonacci word has such a representation and that this representation is unique (Theorem 3). Furthermore, we prove that, for each positive integer n that is not a multiple of 3 , there is precisely one symmetric Fibonacci word of length F_{n}, where F_{n} denotes the $n^{\text {th }}$ Fibonacci number, while there are no symmetric Fibonacci words of length F_{n} if n is a multiple of 3 (Theorem 7).

Let X be an alphabet and let X^{*} be a free monoid of words over X with identity 1. Denote by $\ell(w)$ the length of a word w. Define the reverse R and the shift T on $X^{*} /\{1\}$ by

$$
\begin{aligned}
& R\left(a_{1} a_{2} \ldots a_{n}\right)=a_{n} a_{n-1} \ldots a_{1}, \\
& T\left(a_{1} a_{2} \ldots a_{n}\right)=a_{2} \ldots a_{n} a_{1},
\end{aligned}
$$

where $a_{i} \in X, 1 \leq i \leq n$.
A word $w \in X^{*}$ is said to be symmetric if $w=1$ or $R(w)=w$. Let \mathscr{S} denote the set of all symmetric words over X and $\mathscr{S}^{2}=\{u v: u, v \in \mathscr{Y}\} \backslash\{1\}$. The representations $u v$ and $v u$ where $u, v \in \mathscr{Y}$, are considered to be the same if $v=1$.

Fibonacci words are defined recursively as follows. Fix two distinct letters a and b and put

$$
\begin{aligned}
& w_{1}=a, \\
& w_{2}=b, \\
& w_{3}^{0}=b a, w_{3}^{1}=a b, \\
& w_{4}^{00}=b a b, w_{4}^{01}=b b a, w_{4}^{10}=a b b, w_{4}^{11}=b a b .
\end{aligned}
$$

In general, suppose that $n \geq 5, r_{1}, r_{2}, \ldots, r_{n}$ is a finite binary sequence and that the words

$$
w_{n-2}^{r_{2}^{\prime} r_{2}, \ldots r_{n-4}}, w_{n-1}^{r_{n}^{\prime} r_{2}, r_{n-3}}
$$

have been defined. Then set

For simplicity, we write w_{n}^{0} if $n>3$ and $r_{1}=r_{2}=\cdots r_{n-2}=0$. Each $w_{n}^{r_{2} r_{2} r_{n-2}}$ is called an $n^{\text {th }}$ Fibonacci word derived from the initial letters a and b and is known to have length F_{n}.

[^0]Among all the Fibonacci words, some of them are symmetric but some of them are not. For example, the Fibonacci words $b a b, b a b a b, b a b a b b a b b a b a b$ are symmetric while the Fibonacci words $a b b, b b a, a b a b b$ are not. Nevertheless, it turns out that each Fibonacci word is a unique product of two symmetric words. To prove this unique representation theorem (Theorem 3 below), we need some known results about Fibonacci words (see [1]) and products of two symmetric words (see [2]). The proof of Lemma 1 can be found in [1].

Lemma 1 (Theorems 4 and 7 and Corollary 12(iv) of [1]):
(a) Each $w_{n}^{0}(n \geq 1)$ is a product of two symmetric words, that is $w_{n}^{0} \in \mathscr{S}^{2}$.
(b) There are exactly F_{n} distinct Fibonacci words of length F_{n}, namely, $T^{j}\left(w_{n}^{0}\right), 0 \leq j \leq$ $F_{n}-1$
In Theorem 2.4 of [2] it was proved that a word has more than one representation as a product of two symmetric words if and only if it is a power of another word which is itself a product of two symmetric words. The following lemma contains Theorem 2.1 of [2] and only part of the result just mentioned because we do not need to use the full power of it to prove the unique representation theorem. For completeness, we include a proof.

Lemma 2 (Theorems 2.1 and 2.2 of [2]):
(a) \mathscr{S}^{2} is invariant under T, that is, $T\left(\mathscr{S}^{2}\right) \subset \mathscr{S}^{2}$.
(b) If a word has more than one representation as a product of two symmetric words, then it is a power of another word. More precisely, if p, r, m are positive integers such that $r<p \leq m$ and if, in the word $w=a_{1} a_{2} \ldots a_{m}$, the subwords

$$
\begin{align*}
& a_{1} a_{2} \ldots a_{p}, a_{p+1} \ldots a_{m} \\
& a_{1} a_{2} \ldots a_{r}, a_{r+1} \ldots a_{m} \tag{1}
\end{align*}
$$

are symmetric words, then $w=\left(a_{1} a_{2} \ldots a_{d}\right)^{m / d}$ where $d=(p-r, m)$.
Proof: (a) If $w=a_{1} a_{2} \ldots a_{m}$ is a symmetric word, then

$$
T w= \begin{cases}a_{1} & m=1 \\ a_{2} a_{1} & m=2 \\ \left(a_{2} \ldots a_{m-1}\right)\left(a_{m} a_{1}\right) & m>2\end{cases}
$$

If $w=\left(a_{1} a_{2} \ldots a_{p}\right)\left(a_{p+1} \ldots a_{m}\right)$ where p is a positive integer less than m, and the words $a_{1} a_{2} \ldots a_{p}$ and $a_{p+1} \ldots a_{m}$ are symmetric, then

$$
T w= \begin{cases}\left(a_{2} \ldots a_{m}\right) a_{1} & p=1 \\ a_{2} a_{3} \ldots a_{m} a_{1} & p=2 \\ \left(a_{2} \ldots a_{p-1}\right)\left(a_{p} a_{p+1} \ldots a_{m} a_{1}\right) & p>2\end{cases}
$$

Therefore, (a) follows.
(b) First, note that since the subwords in (1) are symmetric, we have

$$
a_{k}=a_{p+1-k}=a_{r+1-k}(k=1,2, \ldots, m)
$$

[AUG.
with indices modulo m. Hence

$$
\begin{equation*}
a_{k}=a_{p-r+k}(k=1,2, \ldots, m) \tag{2}
\end{equation*}
$$

with indices modulo m. Now choose positive integers i and j such that $i(p-r)-j m=d$. Then, according to (2), we have

$$
a_{k}=a_{i(p-r)+k}=a_{j m+d+k}=a_{d+k}(k=1,2, \ldots, m)
$$

with indices modulo m. This proves (b).
Theorem 3 (Unique representation theorem): Every Fibonacci word has a unique representation as a product of two symmetric words.

Proof: Lemma 1 and Lemma 2(a) imply that every Fibonacci word belongs to \mathscr{S}^{2}. Suppose that some Fibonacci word w has more than one representation as a product of two symmetric words. Then, Lemma 2(b) implies that $w=u^{c}$ for some word u and $c \geq 2$. But then $T^{\ell(u)} w=w$. Since $1 \leq \ell(u)<\ell(w)$, this contradicts Lemma 1(b). This proves the theorem.

Now we determine all the symmetric Fibonacci words. Let

$$
s_{n}= \begin{cases}1 & \text { if } n \text { is a multiple of } 3, \\ 0 & \text { otherwise }\end{cases}
$$

and let

$$
t_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even. }\end{cases}
$$

Let $p_{1}=a, p_{2}=b, p_{n}=w_{n}^{s_{n}^{s} s_{2} \ldots s_{n-2}}$, for $n \geq 3$, and let $q_{n}=w_{n}^{t_{1} t_{2} \ldots t_{n-2}}$, for $n \geq 3$. For odd n, let $s=F_{n-2}$ and $t=F_{n-1}$; for even n, let $s=F_{n-1}$ and $t=F_{n-2}$.

For $n>2$, let us list the F_{n} Fibonacci words of length F_{n} in the following order (Corollary 12(iv) of [1]):

$$
\begin{equation*}
T^{0} q_{n}, T^{s} q_{n}, \ldots, T^{\left(F_{n}-1\right) s} q_{n} \tag{3}
\end{equation*}
$$

If n is a multiple of 3 , then the number of terms in (3) is even, it will be shown in Theorem 7 that there are no symmetric words in the list; however, if n is not a multiple of 3 , the number of terms in (3) is odd and, again, it will be shown in Theorem 7 that only the middle term of (3) is a symmetric Fibonacci word.

Lemma 4: If $n>2$ is not a multiple of 3 , then $p_{n}=T^{j s} q_{n}$ where $j=\left(F_{n}-1\right) / 2$. In other words, p_{n} is the middle term of the sequence (3).

Proof: As was proved in section 5 of [1], $p_{n}=T^{j s} q_{n}$ where

$$
j \equiv \begin{cases}m F_{n-1} & \text { if } n \text { is odd } \tag{4}\\ m F_{n-1}-1 & \left(\bmod F_{n}\right) \\ \text { if } n \text { is even }\end{cases}
$$

where $m=1+\sum_{i=1}^{n-2} F_{i+1} s_{i}$. It follows from the identity $F_{1}+F_{4}+F_{7}+\cdots F_{3 k-2}=F_{3 k} / 2(k \geq 1)$ that

$$
m= \begin{cases}\frac{1}{2} F_{n-1} & \text { if } n \equiv 1(\bmod 3) \\ \frac{1}{2} F_{n+1} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Thus, if $n \equiv 1(\bmod 3)$, then

$$
j \equiv\left(F_{n-2} F_{n}-1\right) / 2 \equiv F_{n}\left(F_{n-2}-1\right) / 2+\left(F_{n}-1\right) / 2 \equiv\left(F_{n}-1\right) / 2\left(\bmod F_{n}\right) ;
$$

if $n \equiv 2(\bmod 3)$, then

$$
j \equiv\left(F_{n}^{2}-1\right) / 2 \equiv F_{n}\left(F_{n}-1\right) / 2+\left(F_{n}-1\right) / 2 \equiv\left(F_{n}-1\right) / 2\left(\bmod F_{n}\right) .
$$

This proves the lemma.
Lemma 5 (Corollary 12(i) of [1]): Let n be a positive integer greater than 2 and $1 \leq j \leq F_{n}-1$. Then the $k^{\text {th }}$ letter in $T^{J s} q_{n}$ is an " a " if and only if $k \equiv(j+r) t\left(\bmod F_{n}\right)$ for some $1 \leq r \leq F_{n-2}$.

Lemma 6: If n is a positive integer greater than 2, then $R\left(T^{j s} q_{n}\right)=T^{\left(F_{n}-1-j\right) s} q_{n}$, for all $0 \leq j \leq$ $F_{n}-1$.

Proof: Let $0 \leq j \leq F_{n}-1$. Suppose that the $k^{\text {th }}$ letter in $T^{j s} q_{n}$ is an " a ". Then, by Lemma $5, k \equiv(j+r) t\left(\bmod F_{n}\right)$ for some $1 \leq r \leq F_{n-2}$. Therefore, $1 \leq F_{n-2}+1-r \leq F_{n-2}$ and

$$
\begin{aligned}
\left(\left(F_{n}-1-j\right)+\left(F_{n-2}+1-r\right)\right) t & \equiv F_{n-2} t-(j+r) t \\
& \equiv F_{n-2} t-k \equiv F_{n}+1-k\left(\bmod F_{n}\right) .
\end{aligned}
$$

This proves that $\left(F_{n}+1-k\right)^{\text {th }}$ letter in $T^{\left(F_{n}-1-j\right) s} q_{n}$ is also an " a ", again by Lemma 5. Consequently, the result holds.

The above lemma can also be proved by observing that $w_{n}^{r_{2} r_{2} \ldots r_{n-2}}=T^{j s} q_{n}$ where j satisfies (4) with $m=1+\sum_{i=1}^{n-2} F_{i+1} r_{i}$ (section 5 of [1]) and that $R\left(w_{n}^{r_{1}^{\prime}, \ldots r_{n-2}}\right)=w_{n}^{v_{1} v_{2}, \ldots v_{n-2}}$, where $v_{i}=1-r_{i}$, $1 \leq i \leq n-2$ (Theorem 3(i) of [1]).

Theorem 7: Let n be a positive integer greater than 2 .
(a) If n is not a multiple of 3 , then p_{n} is the only symmetric Fibonacci word of length F_{n}.
(b) If n is a multiple of 3 , then no Fibonacci word of length F_{n} is symmetric.

Proof: Let $0 \leq j \leq F_{n}-1$. Since $F_{n}-1-j=j \Leftrightarrow j=\frac{1}{2}\left(F_{n}-1\right)$, we see from Lemma 6 that

$$
\begin{equation*}
R\left(T^{j s} q_{n}\right)=T^{j s} q_{n} \Leftrightarrow j=\frac{1}{2}\left(F_{n}-1\right) . \tag{5}
\end{equation*}
$$

(a) If n is not a multiple of 3 , then F_{n} is odd; thus, among the Fibonacci words in (3), $p_{n}=T^{\frac{1}{2}\left(F_{n}-1\right) s} q_{n}$ is the only symmetric one, according to (5) and Lemma 4.
(b) If n is a multiple of 3 , then, clearly, (5) implies that $T^{j s} q_{n}$ is not symmetric for all $0 \leq j \leq F_{n}-1$.

REFERENCES

1. Wai-fong Chuan. "Fibonacci Words." Fibonacci Quarterly 30.1 (1992):68-76.
2. Wai-fong Chuan. "Mirror Functions and Products of Symmetric Words." Preprint.
3. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Oxford University Press, 1979.
4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif.: The Fibonacci Association, 1980.
5. D. E. Knuth. The Art of Computer Programming. Vol. I. New York: Addison-Wesley, 1973.
6. J. C. Turner. "Fibonacci Word Patterns and Binary Sequences." Fibonacci Quarterly 26.3 (1988):233-46.
7. J. C. Turner. "The Alpha and the Omega of the Wythoff Pairs." Fibonacci Quarterly 27.1 (1989):76-86.

AMS numbers: 68R15, 20M05
$\%$
Announcement

SIXTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS

July 18-22, 1994
Department of Pure and Applied Mathematics
Washington State University
Pullman, Washington 99164-3113

LOCAL COMMHTTEE
Calvin T. Long, Co-chairman
William A. Webb, Co-chairman John Burke
Duane W. DeTemple
James H. Jordan
Jack M. Robertson

INTERNATIONAL COMMITTEE

A. F. Horadam (Australia), Co-chair M. Johnson (U.S.A.)
A. N. Philippou (Cyprus), Co-chair P. Kiss (Hungary)
S. Ando (Japan)
G. E. Bergum (U.S.A.) B. S. Popov (Yugoslavia)
P. Filipponi (Italy) J. Turner (New Zealand)
H. Harborth (Germany) M. E. Waddill (U.S.A.)

LOCAL INFORMATION
For information on local housing, food, local tours, etc., please contact:
Professor William A. Webb
Department of Pure and Applied Mathematics
Washington State University
Pullman, WA 99164-3113

Call for Papers

Papers on all branches of mathematics and science related to the Fibonacaci numbers as well as recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 1994. Manuscripts are due by May 30, 1994. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

> Professor Gerald E. Bergum The Fibonacci Quarterly
> Department of Computer Science, South Dakota State University
> Brookings, SD $57007-1596$

[^0]: * This research was supported in part by the National Science Council Grant NSC 81-0208-M-033-03.

