SYMMETRIC FIBONACCI WORDS*

Wai-fong Chuan

Department of Mathematica, Chung-yuan Christian University, Chung Li, Taiwan 32023, Republic of China (Submitted September 1991)

In [1] the author studied Fibonacci words; the study was motivated by the consideration of Fibonacci strings and Fibonacci word patterns by Knuth [5] and Turner [6, 7], respectively. It was shown in [1] that all the n^{th} Fibonacci words can be obtained from any particular n^{th} Fibonacci word, for example w_n^0 , by shifting in a cyclic way the letters in it. Also it was shown that each of the Fibonacci words w_n^0 ($n \ge 3$) has a representation as a product of two symmetric words. In this paper, we show that every Fibonacci word has such a representation and that this representation is unique (Theorem 3). Furthermore, we prove that, for each positive integer n that is not a multiple of 3, there is precisely one symmetric Fibonacci word of length F_n , where F_n denotes the n^{th} Fibonacci number, while there are no symmetric Fibonacci words of length F_n if n is a multiple of 3 (Theorem 7).

Let X be an alphabet and let X^* be a free monoid of words over X with identity 1. Denote by $\ell(w)$ the length of a word w. Define the reverse R and the shift T on $X^*/\{1\}$ by

$$R(a_1a_2...a_n) = a_na_{n-1}...a_1,$$

$$T(a_1a_2...a_n) = a_2...a_na_1,$$

where $a_i \in X, 1 \le i \le n$.

A word $w \in X^*$ is said to be *symmetric* if w = 1 or R(w) = w. Let \mathcal{G} denote the set of all symmetric words over X and $\mathcal{G}^2 = \{uv : u, v \in \mathcal{G}\} \setminus \{1\}$. The representations uv and vu where $u, v \in \mathcal{G}$, are considered to be the same if v = 1.

Fibonacci words are defined recursively as follows. Fix two distinct letters a and b and put

$$w_1 = a,$$

 $w_2 = b,$
 $w_3^0 = ba, w_3^1 = ab,$
 $w_4^{00} = bab, w_4^{01} = bba, w_4^{10} = abb, w_4^{11} = bab$

In general, suppose that $n \ge 5$, $r_1, r_2, ..., r_n$ is a finite binary sequence and that the words

 $W_{n-2}^{r_1r_2\dots r_{n-4}}, W_{n-1}^{r_1r_2\dots r_{n-3}}$

have been defined. Then set

$$w_n^{r_1r_2\dots r_{n-2}} = \begin{cases} w_{n-1}^{r_1r_2\dots r_{n-3}} w_{n-2}^{r_1r_2\dots r_{n-4}} & \text{if } r_{n-2} = 0, \\ w_{n-2}^{r_1r_2\dots r_{n-4}} w_{n-1}^{r_1r_2\dots r_{n-3}} & \text{if } r_{n-2} = 1. \end{cases}$$

For simplicity, we write w_n^0 if n > 3 and $r_1 = r_2 = \cdots r_{n-2} = 0$. Each $w_n^{r_1 r_2 \cdots r_{n-2}}$ is called an n^{th} Fibonacci word derived from the initial letters a and b and is known to have length F_n .

* This research was supported in part by the National Science Council Grant NSC 81-0208-M-033-03.

SYMMETRIC FIBONACCI WORDS

Among all the Fibonacci words, some of them are symmetric but some of them are not. For example, the Fibonacci words *bab*, *babab*, *bababb*, *bababbabbabab* are symmetric while the Fibonacci words *abb*, *bba*, *ababb* are not. Nevertheless, it turns out that each Fibonacci word is a unique product of two symmetric words. To prove this unique representation theorem (Theorem 3 below), we need some known results about Fibonacci words (see [1]) and products of two symmetric words (see [2]). The proof of Lemma 1 can be found in [1].

Lemma 1 (Theorems 4 and 7 and Corollary 12(iv) of [1]):

- (a) Each w_n^0 $(n \ge 1)$ is a product of two symmetric words, that is $w_n^0 \in \mathcal{S}^2$.
- (b) There are exactly F_n distinct Fibonacci words of length F_n , namely, $T^j(w_n^0)$, $0 \le j \le F_n 1$.

In Theorem 2.4 of [2] it was proved that a word has more than one representation as a product of two symmetric words if and only if it is a power of another word which is itself a product of two symmetric words. The following lemma contains Theorem 2.1 of [2] and only part of the result just mentioned because we do not need to use the full power of it to prove the unique representation theorem. For completeness, we include a proof.

Lemma 2 (Theorems 2.1 and 2.2 of [2]):

- (a) \mathscr{G}^2 is invariant under T, that is, $T(\mathscr{G}^2) \subset \mathscr{G}^2$.
- (b) If a word has more than one representation as a product of two symmetric words, then it is a power of another word. More precisely, if p, r, m are positive integers such that $r and if, in the word <math>w = a_1 a_2 \dots a_m$, the subwords

$$\begin{array}{l} a_{1}a_{2}...a_{p}, \ a_{p+1}...a_{m} \\ a_{1}a_{2}...a_{r}, \ a_{r+1}...a_{m} \end{array} \tag{1}$$

are symmetric words, then $w = (a_1a_2...a_d)^{m/d}$ where d = (p-r, m).

Proof: (a) If $w = a_1 a_2 \dots a_m$ is a symmetric word, then

$$Tw = \begin{cases} a_1 & m = 1, \\ a_2a_1 & m = 2, \\ (a_2 \dots a_{m-1})(a_ma_1) & m > 2. \end{cases}$$

If $w = (a_1 a_2 \dots a_p)(a_{p+1} \dots a_m)$ where p is a positive integer less than m, and the words $a_1 a_2 \dots a_p$ and $a_{p+1} \dots a_m$ are symmetric, then

$$Tw = \begin{cases} (a_2 \dots a_m)a_1 & p = 1, \\ a_2 a_3 \dots a_m a_1 & p = 2, \\ (a_2 \dots a_{p-1})(a_p a_{p+1} \dots a_m a_1) & p > 2. \end{cases}$$

Therefore, (a) follows.

(b) First, note that since the subwords in (1) are symmetric, we have

$$a_k = a_{p+1-k} = a_{r+1-k}$$
 (k = 1, 2, ..., m)

252

[AUG.

SYMMETRIC FIBONACCI WORDS

with indices modulo m. Hence

$$a_k = a_{p-r+k}$$
 (k = 1, 2, ..., m) (2)

with indices modulo *m*. Now choose positive integers *i* and *j* such that i(p-r) - jm = d. Then, according to (2), we have

$$a_k = a_{i(p-r)+k} = a_{jm+d+k} = a_{d+k}$$
 (k = 1, 2, ..., m)

with indices modulo m. This proves (b).

Theorem 3 (Unique representation theorem): Every Fibonacci word has a unique representation as a product of two symmetric words.

Proof: Lemma 1 and Lemma 2(a) imply that every Fibonacci word belongs to \mathscr{G}^2 . Suppose that some Fibonacci word w has more than one representation as a product of two symmetric words. Then, Lemma 2(b) implies that $w = u^c$ for some word u and $c \ge 2$. But then $T^{\ell(u)}w = w$. Since $1 \le \ell(u) < \ell(w)$, this contradicts Lemma 1(b). This proves the theorem.

Now we determine all the symmetric Fibonacci words. Let

$$s_n = \begin{cases} 1 & \text{if } n \text{ is a multiple of 3,} \\ 0 & \text{otherwise,} \end{cases}$$

and let

$$t_n = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Let $p_1 = a, p_2 = b, p_n = w_n^{s_1 s_2 \dots s_{n-2}}$, for $n \ge 3$, and let $q_n = w_n^{t_1 t_2 \dots t_{n-2}}$, for $n \ge 3$. For odd *n*, let $s = F_{n-2}$ and $t = F_{n-1}$; for even *n*, let $s = F_{n-1}$ and $t = F_{n-2}$.

For n > 2, let us list the F_n Fibonacci words of length F_n in the following order (Corollary 12(iv) of [1]):

$$T^{0}q_{n}, T^{s}q_{n}, \dots, T^{(F_{n}-1)s}q_{n}.$$
 (3)

If n is a multiple of 3, then the number of terms in (3) is even, it will be shown in Theorem 7 that there are no symmetric words in the list; however, if n is not a multiple of 3, the number of terms in (3) is odd and, again, it will be shown in Theorem 7 that only the middle term of (3) is a symmetric Fibonacci word.

Lemma 4: If n > 2 is not a multiple of 3, then $p_n = T^{js}q_n$ where $j = (F_n - 1)/2$. In other words, p_n is the middle term of the sequence (3).

Proof: As was proved in section 5 of [1], $p_n = T^{js}q_n$ where

$$j \equiv \begin{cases} mF_{n-1} & \text{if } n \text{ is odd,} \\ mF_{n-1} - 1 & \text{if } n \text{ is even,} \end{cases}$$
(4)

where $m = 1 + \sum_{i=1}^{n-2} F_{i+1} s_i$. It follows from the identity $F_1 + F_4 + F_7 + \cdots + F_{3k-2} = F_{3k} / 2$ $(k \ge 1)$ that

1993]

253

$$m = \begin{cases} \frac{1}{2}F_{n-1} & \text{if } n \equiv 1 \pmod{3}, \\ \frac{1}{2}F_{n+1} & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Thus, if $n \equiv 1 \pmod{3}$, then

$$j \equiv (F_{n-2}F_n - 1)/2 \equiv F_n(F_{n-2} - 1)/2 + (F_n - 1)/2 \equiv (F_n - 1)/2 \pmod{F_n};$$

if $n \equiv 2 \pmod{3}$, then

$$j \equiv (F_n^2 - 1) / 2 \equiv F_n(F_n - 1) / 2 + (F_n - 1) / 2 \equiv (F_n - 1) / 2 \pmod{F_n}.$$

This proves the lemma.

Lemma 5 (Corollary 12(i) of [1]): Let *n* be a positive integer greater than 2 and $1 \le j \le F_n - 1$. Then the k^{th} letter in $T^{js}q_n$ is an "*a*" if and only if $k \equiv (j+r)t \pmod{F_n}$ for some $1 \le r \le F_{n-2}$.

Lemma 6: If n is a positive integer greater than 2, then $R(T^{js}q_n) = T^{(F_n-1-j)s}q_n$, for all $0 \le j \le F_n-1$.

Proof: Let $0 \le j \le F_n - 1$. Suppose that the k^{th} letter in $T^{js}q_n$ is an "a". Then, by Lemma 5, $k \equiv (j+r)t \pmod{F_n}$ for some $1 \le r \le F_{n-2}$. Therefore, $1 \le F_{n-2} + 1 - r \le F_{n-2}$ and

$$((F_n - 1 - j) + (F_{n-2} + 1 - r))t \equiv F_{n-2}t - (j+r)t$$

$$\equiv F_{n-2}t - k \equiv F_n + 1 - k \pmod{F_n}.$$

This proves that $(F_n + 1 - k)^{\text{th}}$ letter in $T^{(F_n - 1 - j)s}q_n$ is also an "a", again by Lemma 5. Consequently, the result holds.

The above lemma can also be proved by observing that $w_n^{r_1r_2...r_{n-2}} = T^{js}q_n$ where j satisfies (4) with $m = 1 + \sum_{i=1}^{n-2} F_{i+1}r_i$ (section 5 of [1]) and that $R(w_n^{r_1r_2...r_{n-2}}) = w_n^{v_1v_2...v_{n-2}}$, where $v_i = 1 - r_i$, $1 \le i \le n-2$ (Theorem 3(i) of [1]).

Theorem 7: Let *n* be a positive integer greater than 2.

- (a) If n is not a multiple of 3, then p_n is the only symmetric Fibonacci word of length F_n .
- (b) If n is a multiple of 3, then no Fibonacci word of length F_n is symmetric.

Proof: Let $0 \le j \le F_n - 1$. Since $F_n - 1 - j = j \Leftrightarrow j = \frac{1}{2}(F_n - 1)$, we see from Lemma 6 that

$$R(T^{js}q_n) = T^{js}q_n \Leftrightarrow j = \frac{1}{2}(F_n - 1).$$
⁽⁵⁾

- (a) If n is not a multiple of 3, then F_n is odd; thus, among the Fibonacci words in (3), $p_n = T^{\frac{1}{2}(F_n-1)s}q_n$ is the only symmetric one, according to (5) and Lemma 4.
- (b) If n is a multiple of 3, then, clearly, (5) implies that $T^{js}q_n$ is not symmetric for all $0 \le j \le F_n 1$.

SYMMETRIC FIBONACCI WORDS

REFERENCES

- 1. Wai-fong Chuan. "Fibonacci Words." Fibonacci Quarterly 30.1 (1992):68-76.
- 2. Wai-fong Chuan. "Mirror Functions and Products of Symmetric Words." Preprint.
- 3. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Oxford University Press, 1979.
- 4. V. E. Hoggatt, Jr. *Fibonacci and Lucas Numbers*. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif.: The Fibonacci Association, 1980.
- 5. D. E. Knuth. *The Art of Computer Programming*. Vol. I. New York: Addison-Wesley, 1973.
- 6. J. C. Turner. "Fibonacci Word Patterns and Binary Sequences." *Fibonacci Quarterly* 26.3 (1988):233-46.
- 7. J. C. Turner. "The Alpha and the Omega of the Wythoff Pairs." *Fibonacci Quarterly* 27.1 (1989):76-86.

AMS numbers: 68R15, 20M05

*** *** ***

Announcement

SIXTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS

July 18-22, 1994 Department of Pure and Applied Mathematics Washington State University Pullman, Washington 99164-3113

LOCAL COMMITTEE

Calvin T. Long, Co-chairman William A. Webb, Co-chairman John Burke Duane W. DeTemple James H. Jordan Jack M. Robertson A. F. Horadam (Australia), Co-chair
A. N. Philippou (Cyprus), Co-chair
S. Ando (Japan)
G. E. Bergum (U.S.A.)
P. Filipponi (Italy)
H. Harborth (Germany)

INTERNATIONAL COMMITTEE

M. Johnson (U.S.A.) P. Kiss (Hungary) G. Phillips (Scotland) B. S. Popov (Yugoslavia) J. Turner (New Zealand) M. E. Waddill (U.S.A.)

LOCAL INFORMATION

For information on local housing, food, local tours, etc., please contact:

Professor William A. Webb Department of Pure and Applied Mathematics Washington State University Pullman, WA 99164-3113

Call for Papers

Papers on all branches of mathematics and science related to the Fibonacaci numbers as well as recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 1994. Manuscripts are due by May 30, 1994. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles found on the inside front cover of any recent issue of *The Fibonacci Quarterly* to:

Professor Gerald E. Bergum *The Fibonacci Quarterly* Department of Computer Science, South Dakota State University Brookings, SD 57007-1596

255