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1. A SUMMATION RULE 
Recall that Stirling numbers of the second kind may be expressed as follows (cf, e.g., [1], 

[2]): 

where A/0m is the 7th difference of xm at x = 0 so that S(m, j) = 0 for; > m, S(m, 0) = 0 for 
/H>land£(0,0) = l. 

Summation Rule: Let F(n, k) be a bivariate function defined for integers n,k>0. If there can 
be found a summation formula or a combinatorial identity such as 

t,F(n,kjfy = </>(«,j) (7>0), (1) 

then for every given m > 0 we have a summation formula or a combinatorial identity such as 
n m 

£F(« , k)km = 5>(». j)j\S(m, j) (2) 
k=0 j=0 

which may be called a companion formula of (1). 
Generally, (2) would be practically useful when n is much bigger than m. 

Proof: It is known that Stirling numbers of the second kind satisfy the following basic 
relation [which is often taken as a definition of S(n, k)]: 

m 

where (x)j : x(x -1 ) . . . (x - j +1) (J> 1) is the falling factorial with (x)0 : = 1. Now, substituting 
(3) into the left-hand side of (2), changing the order of summation, and using (1), we easily obtain 

n m n m 

Z ^ . W" = 5>(w, jy^Fip, k)(k)j = Zj\S(m, j)<j>(n, j). 
k=o y=o k=o j=o 

Notice that the special case for m = 0 is also true. Hence, (2) holds for every m > 0. • 

Remark Sometimes in applications of the rule function F(n, k) may involve some independent 
parameters. Moreover, for the particular case in which F(n, k) > 0, so that (j)(n, 0) > 0, the left-
hand side of (2) divided by (j)(n, 0) may be considered as the mih moment (about the origin) of a 
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discrete random variable Xthat may take possible values 0, 1, 2, ..., n. This means that (2) may 
sometimes be used for computing moments whenever F(n, k) I <j)(n, 0) just stands for probabili-
ties (0 < k < n), and the factorial moments 0(«, j)/(j>(n, 0) are easily found via (1) (cf. David and 
Barton [3]). 

2. VARIOUS EXAMPLES 
For the simplest case F(n, k) = 1, we have 

This leads to the familiar formula 
™-m-&% 
n m / 1 \ 

lkm = Y(%\yS(m,j). (4) 

Actually there are many known identities of type (1) in which F(n, k) may consist of a binomial 
coefficient or a product of binomial coefficients. See, e.g., Egorychev [4], Gould [5], and 
Riordan [8]. Consequently, we may find various special summation formulas via (2). We now list 
a dozen formulas, as follows: 

Z*"(*y«"^ =±(fyJj\S(m,j), (5) 
where p + q = l and p > 0. 

U^r-trti"'j/^jj,m/>- (6) 

£(";*)•-£(,;#i>«* A « 
k=oK J y=ov J ' 

ty)fu}"=p-^'tv)^'^ A <I0> 
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(12) 

t{fLtty-W*^ fc=0 ;=0 n-J 
\pS(m,j\ 

where a and /3 are real parameters. 

i^fkT"; k}m-iyyfj) Jis<*j)> 
k=0 

lur/>"-"*"=s(2^y)(">!^.^. 
H, n+l 

j+y 
WS(m,j), 

(13) 

(14) 

(15) 

(16) 

where Hk: = l + j + — \-j , (k > 1), are harmonic numbers. 
Though most of the above formulas [except (5)] appear unfamiliar, or are difficult to find in 

the literature, they are actually companion formulas of some known identities. In fact, (5) is 
known as the mth moment of the binomial distribution of a discrete random variable. Formulas 
(6) and (7) represent companion formulas of the pair of Moriarty identities (cf [4, (2.73) and 
(2.74)]; [5, (3.120) and (3.121)]). Also, (9) and (12) are just companion formulas of the 
following identities: 

|MM";r*1^ 
and 

[nil] n - k\(k n + \ 
2y+ 1 

due to Knuth and Marcia Ascher, respectively (cf. [5, (3.155) and (3.179)]). Moreover, (16) may 
be inferred from the known relation (cf, e.g., [1, pp. 98-99]). 

Whi%\ H, 1 
«+i 

7 + 1 
(17) 

The verification of the rest of the formulas is left to the interested reader. 
Evidently, both (8) and (9) imply (4) with s = 0, and (13) yields the Vandermonde convolu-

tion identity when m = 0. Moreover, it is easily found that (16) leads to an asymptotic relation, 
for n —» oo? of the following, 

n Mw+1 

!kmHk 
k=l m + l\ m + \ 

logft + y - - 1 

where y: = limn(Hn -logn) = 0.5772... is Euler's constant. 
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3, AN EXTENSION OF THE SUMMATION RULE 
In what follows, we will adopt the notations: 

(x\h)n : = x(x-h)(x-2h)~-(x-nh+h), (x\h)0 = 1, 

Here (*) is known as the generalized binomial coefficient (cf. Jordan [7, ch. 2, §22). Now, 
suppose that a and f3 SLTQ two distinct real numbers. Consider the following pair of expressions 
for polynomials (x\a)n and (x\p)n\ 

(*|a)„ = iX(/i,*|/3)(*|/3)t , (18) 

( x l / J ^ i ^ / a i a X x I a ) * . (19) 

The coefficients Sa(n, k\P) and Sp(n, k\oc) involved in (18) and (19) are uniquely determined, and 
they may be called a pair of symmetrically generalized Stirling numbers associated with the 
number pair (a, /?). Consequently, the ordinary Stirling numbers of the first and second kinds are 
associated with the number pair (1,0), and are usually denoted by the following: 

Sx(n9 k) ss s(n, k) : = ̂ (/i, k\0\ S2(n, k) = S(n, k) : = iS0(w,*|l). 

Certainly, all the well-known properties enjoyed by the ordinary Stirling numbers, e.g., recurrence 
relations, orthogonality relations, and inversion formulas, etc., can be readily extended to these 
generalized Stirling numbers. For example, a simple recurrence relation may be deduced from 
(19), namely 

Sp(n,k\a) = Sp(n-l,k-l\a) + (ka-nf5 + l3)Sp(n-l,k\oc\ (k>l). (20) 

Recall that there is a general form of Newton's expansion for a polynomial f(x) of degree n, viz., 

/W = iTTT-</(°)> (21) 

where Ak
af(0) is the A:* difference (with increment a) of f(x) atx = 0. Thus, comparing (21) 

with (19) and (18), we find (with aji * 0), 

k\ak Sa(n,k\a) = —1-Ak
a(x\P)f, (22) 

x=0 

Sa(«,k\fi=-±jrAk
pWa)n (23) 

x=0 

Here, it is easily observed that Sp(n, k\a) = 0fork>n, and Sp(0,0|a) = Sp(n,n\a) = 1. More-
over, notice that for J8 = 0 (23) should be replaced by 
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SJn, k\G) = — Mm \ttB{x\a)n 
1 (d 

x=0 k\\dx 
(x\a)„ 

x=0 

Extended Summation Rule: Let F(n, k) be defined for integers n7k>0. If there can be found 
a summation formula such as 

k=0 \JSa 

then for every m > 0 we have a summation formula of the form 

n flr\ m 7*1 

YF^Mm) =T,G(n>j)—M>»,j\«y 

Also, suppose that the following series is convergent to g(j) for every j > 0: 

(24) 

(25) 

k=o ^J Set 

Then we have a summation formula, as follows: 
0 0 / lr \ m 7 ! 

I / ( d ; =IsgU)-$p(rnJ\cx) 

Proof: Notice that (19) implies 

1 m 

, =-iIiJ\Sp(m,J\a) 

(26) 

(27) 

(28) 

Thus, both of the implications (24) => (25) and (26) => (27) can be verified in a manner similar to 
that used to prove (1) => (2). In fact, the verification of (27) can be accomplished by substituting 
(28) into the left-hand side of (27) and by using (26), in which the change of order of summation 
is justified by the convergence of the series (26). Moreover, it is evident that 

*.<fc*i«>={j tin 
so that (25) and (27) will transform back to (24) and (26), respectively, when J3 = a. Hence, (27) 
holds for every real number /?. D 

Examples: For the case a = 1, we may write 

Sp(mJ\l) = -AJ(x\p)f (29) 
\x=0 

In particular, we have 

SQ(m, j\l) = S{m, j), S^m, j\\) = ^ | ( j _ fj, 

where S^m, j | l )(- l)w is known as Lah's number. 
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Making use of the rule (24) => (25) (with a = 1), it is readily seen that each of the formulas 
from (5) through (16) may be generalized to the form in which km is replaced by f*l and S(m, j) 
by the following: Sp(m, j | l) lm\. Thus, for instance, (13) and (16) may be replaced, respectively, 
by: 

(30) i{kXny-kXi)A{ny-lJ)^(m.M 
k=0 P 1=0 

ft / 7 \ rri / , - | 

k=i s ; *=zni ;= i 
H, 77+1 

j+y m\ SpfaM- (31) 

In particular, for j3 = 0,1, - 1 , we have fM =km/m\, fM = (M, and (k) =(k+™ l \ so that either 

(30) or (31) may yield at least three special identities of some interest. Indeed, (31) implies (16), 
(17), and the identity 

Moreover, as a simple consequence of (30), one may take x = y - n and j3 = 0 to get 
2 

n\ um_^(2n-j 
fc=ov J y=ov y 

This is an example mentioned in Comtet [2, ch. 5, p.. 225]. 
To indicate an application of the rule (26) => (27), let us consider the simple example with 

f{k) = qk: 

Consequently, we obtain 

fc=0v 

u^r-k^'™ (32) 

This may be used to evaluate an infinite series involving both generalized binomial coefficients and 
Fibonacci numbers. Denote a = X(l + V5),ft = X(l-V5), and let p>a. Then the following 
series, 

»-t(i)rt. 
fc=0v yp 

is obviously convergent for every m> 0, where/^ = (ak+l - bk+l) / ̂ . Certainly one may com-
pute the series by means of (32) as follows: 

*-£t(i]>'<»w-0'p>w]=£f Vsfc fc=0V y /3 

a 
V+1 

P " a . 

( i. Y + 1 

.p-ft m! 
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In particular, we have 

±kmp-kFk=-^f\\ — \ - I T ^ I \P-S(mJ). 
k=0 V J y=o 

\ / + l / u V+1 

p-aj \p~b 
Finally, it may be worthy of mention that, for the case a = 1, relation (26), apart from the 

factor (-1); just stands for the 5*-transformation of the given sequence {/(&)}, which is con-
nected with quasi-Hausdorff transformations (cf. Hardy [6, §11.19]). Moreover, it may be 
remarked that the rule (24) => (25) can still be generalized. Let the functions h(x, m) and g(x, j) 
be related by 

m 

h(x, m)^ *(">> JMX> J)> (33) 
j=o 

where the t(m, j) are complex numbers. Define 

ftF(ft,k)g(kJ) = <P(n,j). (34) 

Then we have 
n m 

XF{n, k)h(k, m) = £ H», Mm, J)- (35) 
k=0 j=0 

This extended rule (34) => (35) may even be used to obtain some interesting formulas involving 
Comtet's generalized Stirling numbers whose definitions may be found in [9]. However, we will 
omit the details here. 
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