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1. A SUMMATION RULE
Recall that Stirling numbers of the second kind may be expressed as follows (cf., e.g., [1],

[2)): |

N V. . ! j—i(j).-m
where A/0™ is the j™ difference of x™ at x = 0 so that S(m, j)=0 forj>m, S(m,0)=0 for
m=1and S(0,0)=1.

Summation Rule: Let F(n, k) be a bivariate function defined for integers n, £ > 0. If there can
be found a summation formula or a combinatorial identity such as

4 k . .
> Fo i k)=o) G20 )
k=j
then for every given m >0 we have a summation formula or a combinatorial identity such as
Y Fm k™ =3 ¢(n, /)j1S(m, j) ©
k=0 Jj=0

which may be called a companion formula of (1).
Generally, (2) would be practically useful when » is much bigger than m.

Proof: 1t is known that Stirling numbers of the second kind satisfy the following basic
relation [which is often taken as a definition of S(n, k)]

X" =Y S(m, j)(x),. @)
Jj=0

where (x); :x(x—1)...(x— j+1) (j=1) is the falling factorial with (x),:=1. Now, substituting
(3) into the left-hand side of (2), changing the order of summation, and using (1), we easily obtain

YFE@ k" =3 S(m, )Y F(n,k)(k); =Y jIS(m, j)o(n, j).
k=0 j=0 k=0 j=0
Notice that the special case for m = 0 is also true. Hence, (2) holds for every m>0. O

Remark Sometimes in applications of the rule function F(n, k) may involve some independent
parameters. Moreover, for the particular case in which F(n, k) > 0, so that ¢(n, 0) > 0, the left-
hand side of (2) divided by ¢(n, 0) may be considered as the m™ moment (about the origin) of a
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discrete random variable X that may take possible values 0, 1, 2, ..., n. This means that (2) may
sometimes be used for computing moments whenever F(n, k) / ¢(n, 0) just stands for probabili-
ties (0 <k <n), and the factorial moments ¢(n, j)/§(n, 0) are easily found via (1) (cf. David and
Barton [3]).

2. VARIOUS EXAMPLES
For the simplest case F(n, k) =1, we have
n+1
won=3(5)-(721)
k=j
This leads to the familiar formula

(’}i}) Sem, ). @

Actually there are many known identities of type (1) in which F(n, k) may consist of a binomial
coefficient or a product of binomial coefficients. See, e.g., Egorychev [4], Gould [5], and
Riordan [8]. Consequently, we may find various special summation formulas via (2). We now list
a dozen formulas, as follows:

k

S (i ot - ()pﬂS(m ) ©)

k=1

where p-+g=1andp>0.

[nm(Zk)k ZZ(n; J);_f_J 15em. ) ©)
["/2}(2’2111)* Zzn-2,(n I)jsm )
St

é(ﬁk)k (n+1)(n+i+S)::ll+j]|S(mJ) ©)

St -Sers (e oo

R
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[n/2]

20D (e - 2( b3 prsom (12)

S ()P Jem =2 (%) B Yrsm . (13)

k=0 J=0\

where o and 3 are real parameters.

z< o (5> K e z< (7 )21'5(’" ) (14)

{21(2,2 )(2/5)2,,_2;6 o = jz;)(zn 2J)( ) i1S(m, j), (15)
>k, é(’}i})(lfm—;i—l]j!S(m, ) (1)

where H, :=1+21+:--++, (k >1), are harmonic numbers.

Though most of the above formulas [except (5)] appear unfamiliar, or are difficult to find in
the literature, they are actually companion formulas of some known identities. In fact, (5) is
known as the m™ moment of the binomial distribution of a discrete random variable. Formulas
(6) and (7) represent companion formulas of the pair of Moriarty identities (cf. [4, (2.73) and
(2.74)]; [5, (3.120) and (3.121)]). Also, (9) and (12) are just companion formulas of the

following identities:
i(k +s)(k):(nfl)(n+l+s)n+1—j
a\ls N J S Js+l+)

[fl( ) ( )( )2,, % (_ 1),(2;1]111)

due to Knuth and Marcia Ascher, respectively (cf. [5, (3.155) and (3.179)]). Moreover, (16) may
be inferred from the known relation (cf, e.g., [1, pp. 98-99]).

£ ) ™

The verification of the rest of the formulas is left to the interested reader.

Evidently, both (8) and (9) imply (4) with s = 0, and (13) yields the Vandermonde convolu-
tion identity when m = 0. Moreover, it is easily found that (16) leads to an asymptotic relation,
for n— oo, of the following,

and

n nm+1( 1 )
k"H, ~ logn+y ———|,
kZ:I oml gy m

+1
where y : =lim ,(H,, —logn) = 0.5772... is Euler's constant.

258 [AUG.



A SUMMATION RULE USING STIRLING NUMBERS OF THE SECOND KIND

3. AN EXTENSION OF THE SUMMATION RULE

In what follows, we will adopt the notations:

(x|h), :=x(x=h)(x—2h)--- (x —nh+h), (x|h), =1,

(), = morm, () =(3) =@ m, (3) =

Here (¥ is known as the generalized binomial coefficient (cf. Jordan [7, ch. 2, §22). Now,
h

suppose that ocand 8 are two distinct real numbers. Consider the following pair of expressions

for polynomials (x|cx), and (x|f),:

(<o), = 3 8o (m, KIBYIB)e (18)
k=0

x1B)y = 3. Sy (n, Kla)(x|oo). (19)
k=0

The coefficients S, (n, k| ) and Sg(n, k|c) involved in (18) and (19) are uniquely determined, and
they may be called a pair of symmetrically generalized Stirling numbers associated with the
number pair (¢, ). Consequently, the ordinary Stirling numbers of the first and second kinds are
associated with the number pair (1, 0), and are usually denoted by the following:

S,(n, k)= s(n, k): = S,(n, k0), S,(n, k)= S(n, k):=S,(n,k|1).

Certainly, all the well-known properties enjoyed by the ordinary Stirling numbers, e.g., recurrence
relations, orthogonality relations, and inversion formulas, etc., can be readily extended to these
generalized Stirling numbers. For example, a simple recurrence relation may be deduced from
(19), namely

Sp(n, ko)) = Sg(n—1, k— 1)+ (kot —nf + B)Sg(n—1, klev), (k 21). (20)

Recall that there is a general form of Newton's expansion for a polynomial f(x) of degree n, viz.,
2 (x]oc

7= 38D 10) 21)
o klo

where A%, £(0) is the k™ difference (with increment o) of f(x) atx =0. Thus, comparing (21)
with (19) and (18), we find (with a3 #0),

&m&m=ﬁ7%u@n, 22)

: x=0

%mﬂm:ﬁ;%mmn (23)
: x=0

Here, it is easily observed that Sg(n, k|or) =0 for k >n, and Sg(0, Ojox) = Sg(n, njor) =1. More-
over, notice that for =0 (23) should be replaced by
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- %(%)k (o0,

Extended Summation Rule: Let F(n, k) be defined for integers n, k > 0. If there can be found
a summation formula such as

1. 1
Sa(n,k10>=mg?0ﬁ&z(x|a>n

x=0 x=0

24

: k , .
F(n, k)| =G, j), (j=0), 24
>re(5) =G, G20 (24)

then for every m > 0 we have a summation formula of the form
3 Fe, )
k=0

Also, suppose that the following series is convergent to g(j) for every j>0:

- i G(n, j)%sﬁ (m, jlo). (25)
y o !

o0 k )
>r6(%) =s (26)
k=0 a
Then we have a summation formula, as follows:
- EY < J! .
2L E) ) =2.8()==Ss(m, jlox). (27)
k=0 B j=0 m:
Proof: Notice that (19) implies
X 1 & i . (Xj
= — 1Sg(m, jloo) = | . 28
(,,,)ﬁ i 2 Spom (7). (29)

Thus, both of the implications (24) = (25) and (26) = (27) can be verified in a manner similar to
that used to prove (1) = (2). In fact, the verification of (27) can be accomplished by substituting
(28) into the left-hand side of (27) and by using (26), in which the change of order of summation
is justified by the convergence of the series (26). Moreover, it is evident that

1 fork=
Sa(”’klo‘):{o fork <n

so that (25) and (27) will transform back to (24) and (26), respectively, when 8 = oc. Hence, (27)
holds for every real number . O

Examples: For the case o = 1, we may write

(29)

Sy(m, Jll):%A’(ﬂﬁ)m

x=0

In particular, we have

, . . m(m—
Solom 0 = 56, 1), 5.40m, 1) ="2(" ),
JI\J

where S_,(m, ji1)(=1)" is known as Lah's number.
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Making use of the rule (24) = (25) (with o =1), it is readily seen that each of the formulas

from (5) through (16) may be generalized to the form in which k™ is replaced by (fn) and S(m, j)
B

by the following: Sg(m, jll)/m!. Thus, for instance, (13) and (16) may be replaced, respectively,

by:
’é(z)(ni/k)(i)ﬁ ) Z;)(x;yJ /) (m) S (30)
El@)ﬁ]{k:g@iﬂ(ﬁﬂ ]ilj Sy (om, ji). 61)

In particular, for §=0,1,—1, we have C; ) =k, (’,;) ( ) and (m) (k *m= 1) so that either
(30) or (31) may yield at least three special identities of some interest. Indeed, (31) implies (16),

(17), and the identity
k+m—1 n+1 1
H_ ,———|
2 (e A A (é) )( J-+1]

Moreover, as a simple consequence of (30), one may take x = y =n and =0 to get
” (Y - (2n—j

Z(k) k" = X( Y )(n)jS(m, 7.

k=0 J=0

This is an example mentioned in Comtet [2, ch. 5, p. 225].
To indicate an application of the rule (26) = (27), let us consider the simple example with

Ft=g"
S(4) ==, dai<n

k=0
Consequently, we obtain
- k) P S g .
Z q :Z—-——.——S (m, ji1). (32)
k=o(m B j=0 (1-g)"'m! g

This may be used to evaluate an infinite series involving both generalized binomial coefficients and

Fibonacci numbers. Denote a = ¥%(1++/5),b=1%(1-+/5), and let p>a. Then the following
series,

is obviously convergent for every m >0, wheref, = (a**' -b**")/ V5. Certainly one may com-
pute the series by means of (32) as follows:

. P [k K+l k]_ P % j+l_ p Y J! .
@Z(m) @/ oy -6/ )] ﬁz{(p aj (p_b) Jmlsﬁ(m,m).
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In particular, we have

gkm 5 Z[(p a)m _(plibjm]jm(m’ 7

Finally, it may be worthy of mention that, for the case o =1, relation (26), apart from the
factor (1)’ just stands for the §”-transformation of the given sequence {f(k)}, which is con-
nected with quasi-Hausdorff transformations (cf. Hardy [6, §11.19]). Moreover, it may be
remarked that the rule (24) = (25) can still be generalized. Let the functions A(x, m) and g(x, j)
be related by

h(x, m)=jﬁ0t(m, ) 33)
where the £(m, /) are complex numbers. Define
éF(n, gk, )= 0, ). (34)
Then we have —
zF(n Kyhtk, m) = ]ZO*”(” Dim, ). 39)

This extended rule (34) = (35) may even be used to obtain some interesting formulas involving
Comtet's generalized Stirling numbers whose definitions may be found in [9]. However, we will
omit the details here.
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