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INTRODUCTION 

Repeating decimals containing the Fibonacci and Lucas numbers when their repetends are 
viewed in retrograde fashion, reading from the rightmost digit of the repeating cycle toward the 
left, have been explored in [1], [2], [3], [4], and [5]. Here, the sequences of generalized Fibonacci 
numbers u(n; p, q) which can be interpreted as sums along diagonals in Pascal's binomial coeffi-
cient triangle [6] and extended to multinomial coefficient arrays [7] are found within repetends, 
both as read left to right and as read right to left. 

1. BINOMIAL DIAGONAL SUMS 

Let u(n;p,q) be the sum of terms found along the rising diagonals of Pascal's binomial 
coefficient array written in left-justified form, 

1 
1 1 
1 2 1 (1.1) 
1 3 3 1 
1 4 6 4 1 

Call the top row the zero* row and the left-most column the zero* column. Then u(n; p, q) 
is the sum of those elements found by beginning in the zero* column and w* row and taking 
steps/? units up and q units right throughout the left-justified array. Note that u(n\ 1,1) = F„+1, the 
(n + Xf1 Fibonacci number. The sequence u(n\ p, 1) has the generating function [7] 

1 = f>(#r,/>,!)*" (1.2) 
L x x n=0 

which converges for \x\< 111. From the generating function, the recursion for the u(n; p, 1) is 

u(n;p,l) = u(n-l;p,l) + u(n-l-p;p,l\ n>p + l, 
where u{n\ /?, 1) = 1 for n = 0, 1, ..., p. 

Then, taking x = 1 /10 in (1.2), the decimal representation of the fraction 

lO^1 

lO^ 1 -10^-1 
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has successive terms u(n;p7l) appearing as successive digits in its repetend until carrying 
disguises the pattern. When/? = 1, we display the Fibonacci numbers in the well known 

100/89 = 1.12358 
13 
21 ... 

where the decimal is moved from the usual 1/89 so that the left-most digit is u(0; 1,1) = FV We 
also have 

1.00 
.11 
.0121 
.001331... 

or H - l l / 1 0 2 -f-112 /104 H— = 102 /(102 -11) = 100/89 by summing the geometric series. 
Similarly, for u(n;p,l), since (lO^ + l)* displays the coefficients of the &* row of Pascal's 
triangle interspersed by (p-1) zeros, we can sum elements that are/? units up and 1 unit over by 
summing the geometric series 

l + (10^+l ) /10^ + 1 +(10^+l ) 2 /10 2 ^ + 2 + . . »=10^ 1 / ( l0 / ? + 1 - (10 / ? + l ) ) . 

From [1], since 10(10p + 1 ) - 1 = lO^4"1 + 9, the repetend of the fraction 1/(10P+1 + 9) ends in 
powers of (10p +1), and thus gives u(n; p, 1) reading from right to left in the repetend. Again, 
we have the symmetric coefficients of Pascal's triangle interspersed with (p-l) zeros, so, for 
example, forp = 2, powers of 101 appear from the right as 

1 
101 

10201 
1030301 

104060401 

making as a sum .. .6432111 where u(n; 2,1): 1,1,1,2,3,4,6, . . . . Notice that we are summing 
elements that are up 2 and over 1 in the Pascal array (1.1), applying the Pascal connection of [1]. 

So far, the sequences u(n;p, 1) mimic the Fibonacci sequence in these applications. How-
ever, u(n; 1, q) is more challenging. 

Start with u(n\ 1,2): 1,1,1,2,4, 7,12,21, . . . , which has zero column elements in its definition. 
Then u(n; 1,2) has the associated sequence v{n\ 1,2): 0,1,2,3,5, 9, . . . , n = 0,1,2, . . . , formed by 
summing up 1 and over q throughout array (1.1) but starting with column one instead of column 
zero. Consider 

10.00 
.11 
.00121 
.00001331 
.00000014641... 

which is 1 /10"1 +11 /102 4-112 /105 + • • • = 104 / (103 -11) = 10000 / 989. The coefficients of suc-
cessive powers often appearing are 1,0,1,1,1,2,2,3,4,5,7, 9,12,16,21,. . . , where the odd terms 
give u(n; 1,2) and the even terms give v(n; 1,2), and we see powers of 11, and 989 = 103 - 1 1 . 

1993] 347 



RETROGRADE RENEGADES AND THE PASCAL CONNECTION II 

Now, 102 -11 — 1 = 1099 gives powers of 11 shifted in groups of 2 to make the same sum from the 
right in 1/1099, which ends in 

1211101 
1331 

14641 

which sums to ...975432211101, where the w(»; 1,2) and the v(n; 1,2) are interleaved. 
Now, u{n; 1,3) begins on column zero, and has two related sequences v(n; 1,3) and 

w(n; 1, 3) that begin with columns one and two in array (1.1): 

u(n; 1,3): 1,1,1,1,2,5,11,... 
v(n; 1,3): 0,1,2,3,4,6,11,... 
w(n; 1,3): 0,0,1,3,6,10,.... 

Then 1 /10"2 +11/102 +112 /106 + • • • = 106 /(104 -11) = 1000000/9989 = 100.11012..., where 
the coefficients of 10* are the three sequences interleaved with u(n; 1,3) appearing as every third 
term. That is, 

100.00 
.11 
.000121 
.0000001331 
.00000000014641... 

which sums with coefficients 

1,0, 0,1,1,0,1,2,1, U , 3,2,4,6,5,6,10, U, 11,.... 

Now, 9989 = 104 -11 , and 103 • 11 - 1 = 10999. The three sequences u{n; 1,3), v(n; 1,3), and 
w(n, 1,3) are interleaved from right to left in the decimal repetend of 1/10999. 

In general, u(n; 1, q) appears as one of q sequences that interleave from left to right in 
102* / (10?+1 -11) and from right to left in the repetend of 1 / (10? -11-1). The q sequences are 
formed by summing up 1 and over q throughout array (1.1), beginning with column k, k=0, 1, ..., 
q-\. 

Things get more peculiar if we take q^l.p^l. Take/7 = 2, q = 2, and let v(»; 2,2) be the 
related sequence beginning at column one: 

u{n, 2,2): 1,1,1,1,2,4, 7,11,17,27,44, 72,117,189,... 
v(«;2,2): 0,1,2,3,4,6,10,17,28,45,72,116,.... 

We have to split Pascal's triangle into even and odd rows: 

10.000 
121 
.0014641 
.000016(15)(20)(15)61 
.000000 1 8 ... 
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which is 1 /10_ 1 +112 /103 +114 /107 + • • • = 100000 / 9879 = 105 / (104 - l l 2 ) , and which has for 
coefficients of successive powers of 10 from left to right 

1,0,1,2,2,4,7,10,17,28,. . . 
while 

11 
.001331 
.000015(10)(10)51 
.000000 1 7 ... 

has sum 11 /102 +113 /106 +115 /1010 + • •• = 1100 / 9879 with coefficients of successive powers of 
10 given by 

1,1,1,3,4,6,0,17,27,45, . . . , 

where we see in both sequences that every second term of u(n; 2,2) is interleaved with every sec-
ond term of v(n; 2 ,2) . Now, 104 - 1 1 2 = 9879 and 112 • 102 - 1 = 12099 so 1/12099 has powers 
of 112 in groups of 2 digits to give the same interleaved sequence from right to left as in the even 
split above. 

If we take/? = 3 and q = 2, 

u{n- 3,2): 1,1,1,1,1,2,4, 7,11,16,23,34,52,.. . 
v(n; 3,2): 0,1,2,3,4,5,7,11,18,29,45, 68, . . . 

then l / l O ^ - t - l l V l O ^ l ^ / l O ^ l f / l O ^ + ' . ^ l O ^ O O 5 - ! ! 3 ) has as coefficients of 10* 
from left to right 

1,0,1,3,4,7,16,29,52,.. . , 

where every second term comes from every third term in u(n; 3,2) and v(n; 3,2). There are three 
similar cases, where the other two come from l l 2 /103 -hiI5 /108 + 118 /1013 + ••• 
= 11 2 -10 2 / (10 5 -11 3 ) and 11/102 +114 /107 +117 /1012 + •» = 1 M 0 3 /(105 - l l 3 ) . Now, 
103 -113 — 1 = 1330999, and the repetend of 1/1330999 has powers of 113 appearing in groups of 
3 from right to left, and has the primary interleaved sequence appearing from right to left. 

In general, for u{n;p,q), q>\, p>l, the primary case of q sequences interleaved where 
every q^ term is every pm one in the q sequences, appears from left to right in the coefficients of 
10* in the decimal expansion of the fraction W+2q~l I {W+q -llp) while the repetend has the 
primary7 case appearing right to left in the repetend of 1/(10^ -\\p - 1 ) , where powers of l\p 

appear in groups of q from right to left. If we take q = 1 in the formula for u(n\ /?, q), we get 
10p + 1I{\0p + l -llp), which makes every p^ term of u(n;p,l) appear, in contrast to 
l O ^ 1 / ( lO^ 1 - 10p - 1 ) , which makes all terms of u(n\ p, 1) appear. 

These representations of u(n; p, q) come from summing the geometric series 

1 I F l l 2 ^ iQ/**q-i 
101"* + l O ^ 1 + \Q2p+q+l + ' " ~ W+q-llp ' 
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where 11^ gives coefficients of every /?th row of Pascal's triangle, 10*+1 gives a separate place 
value for each coefficient, the ratio 11* / 10*+g moves/? rows up and q columns over in the array 
(1.1), 1 / \0l~q puts all zero terms of the q sequences to the left of the decimal point, and w(l; /?, q) 
is the coefficient of 1/10 in the decimal expansion. Summing all columns down catches all sum-
mands in the infinite sum, and makes q sequences interleaved. The repetend of 1 / (\0q • 1 1* -1), 
read from right to left, ends in pth powers of 11 moved over q columns, again giving q interleaved 
sequences. 

It is possible to make decimals for u(n; /?, q) that list every term of the q interleaved 
sequences if (/?, q) = 1. If we sum 

1 10*+ 1 10*+1 iQP+2g-i 

we have lined up the array to give successive terms of u(n\ p, q), n = 0, 1, 2, ..., interleaved with 
the successive terms of the other q-\ related sequences. Note that 10*+1 = 10...01,(/?-l) 
zeros, will give coefficients of rows of Pascal's triangle interspersed with (p -1) zeros, when 
raised to powers. The ratio (10*+l)/10*+g gives successive rows shifted/? units over and q 
units up to line up coefficients for summing. Then, u(l;p,q) is the coefficient of 1/10 and 
u(0;p,q) appears to the left of the decimal point, as do the zero terms of the other (q-l) 
sequences. The terms of the sequence u(n; /?, q) are interspersed with the terms of the q related 
sequences as before. However, if ( /? ,q)^\ , coefficients will not line up for proper summing to 
make u(n; /?, q). If/? = g, we get u(n; /?, q) as given by the fraction 

103*"1 _ 10*-1-(10p)2 

102* -10* - 1 " ~ (10*)2 - (10*)1 - 1 

where u(n; 1,1) is given by 102(102 —101 — 1) from our earlier fraction for u(n;p,l). If we 
replace 10 by 10*, we write a fraction where u{n\ 1,1) appears as every /?th term, interspersed by 
(/? -1) zeros, and we get the fraction for u(n; /?, /?) except for a shift of (/? -1) places in the deci-
mal point. We also line up previously derived sequences whenever ( /? ,q)^\ . Let (/?,q) = d. 
Then the fraction for u(n;p,q) gives the sequences u(n;p/d,q/ d) as every dth coefficient, 
interspersed so that the q/d sequences are interleaved, but the decimal point is moved (d -1) 
places to the right. When (p,q) = l, u(n;p,q) is given from the right in the repetend of the 
fraction 1 / [10^ • (10* +1) -1] appearing as part of the q interleaved sequences. 

Of course, [7] gives the generating function for u(n\ /?, q) as 

( 1 " X ) 9 , = Y u(n; /?, q)xn 

(l-x)q-xp+q „r0
 V 'F'V 

which converges for | x |< l /2 . Taking x = 1/10 and simplifying, the decimal expansion of 
9q~l • 10*+2^_1 / (9q • 10* -1) had u(n; /?, q) appearing as coefficients of 10* from left to right but 

350 [NOV. 



RETROGRADE RENEGADES AND THE PASCAL CONNECTION II 

carrying makes the pattern disappear quickly. The pattern continues longer if we use x = 1/10*, 
k > 1, and look at groups of A: digits. This representation, however, does not lead to the same 
sequences being found in patterns from right to left except when q = 1. 

2. TRINOMIAL DIAGONAL SUMS 

The coefficients appearing in expansions of the trinomial (1 + x + x2 ) n , n - 0 ,1,2, . . . , written 
in left-justified form, are 

1 1 
2 3 2 1 
3 6 7 6 3 1 ( 2 1 ) 
4 10 16 19 16 10 4 1 
5 15 30 45 51 45 30 15 5 1 

Call the top row the "zero111 row" and the left column the "zero* column." Let u(n; p, q) be the 
sum of the term in the left column and the nth row and the terms obtained by taking steps/? units 
up and q units right throughout the array. Then, from [7], 

JT-_r = ftf(w;/,,l)x-. (2.2) 
l-x-xp+i-x w=l 

As in §1, the decimal expansion of 102p+1 / (102/?+1 - (102/? +10^+1)) has u(n; p, 1) as the coeffi-
cients of successive powers of 1/10 where u(0; p, 1) appears left of the decimal point, and powers 

o f O O ^ + lO ' + l) appear as 

(10 2 / ? +10 p +l ) ( lO^ + l O ' + l ) 2 102/?+1 

+ 102/7+1 + 104^+2 +'"~\o2P+l- (102 ' + 10 '+1)" 

Since 10(102/? +10p + 1) -1 = 102/?+1 + 10/H"1 +9, the repetend of l/(102/7+1+10^+1+9) ends 
in i#(«; p91) as in the binomial case. Note that/? = 1 gives the Tribonacci case reported in [1]. As 
before, the case for u(n\ p, 1) is simple because the known generating function almost takes care 
of it, but we are on our own when q > 1. 

Now, suppose that/? = 1, and consider u(n\\9q\ q>\. Then the decimal expansion of 
\®2q+lI(\Qq+2 -111) gives q interleaved sequences as in the binomial case from left to right, 
while the repetend of 1/(10* -111-1) gives q interleaved sequences from right to left. 

The case for u(n; p, q) is given from left to right by I02p+2q~l/(I02p+q - 1 1 lp), which gen-
erates every pm term of q interleaved sequences. Each of the q sequences is generated by starting 
in the k^ column, /1th row, and summing elements found by taking steps of up p, right q, 
throughout array (2.1), for k = 0, 1, ..., q - 1. Similarly to the binomial case, we sum 
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1/101_9+ l l l p /102 ' + 1+l l l 2 p /104 / ? +*+ 1 . . . , where the geometric ratio is l l l ' / l O 2 ^ * to select 
every /7th row and move q units right in the array, 11 lp contains 2p + 1 terms, and the zero term 
for each sequence appears to the left of the decimal point. The repetend of the fraction 
1/(10* -11 lp -1) will have the same interleaved sequences appearing from right to left and will 
show powers of 11 lp diagonalized from the right. 

Similarly to the binomial, we can write every term of the q interleaved sequences for 
u(n\ p, q), (p, q) - 1 from left to right by summing 

1 \02p + 10^+1 ( IQ^+lO'+l ) 2
 102/H-2g-i 

101"* + 1 0 2 / 7 + 1 + 104p+*+1 +'"~ \02p+q-\02p -10'-1 

and the same q sequences appear from right to left in the repetend of 1/(10^ • (102p + \0P +1) -1). 

3. MULTINOMIAL DIAGONAL SUMS 

Write the coefficients appearing in expansions of the multinomial (1 + x + x2 H— + xw)", n = 
0, 1, 2, ..., in left-justified form. Call the top row the zeroth row and the left column the zero* 
column. Let u(n; p, q) be the sum of the term in the zero* column and 72th row and the terms 
obtained by taking steps/? units up and q units right throughout the array. Then, from [7], 

i x XP+I J»i ... x^x=IM(";p> r>x"-
1 - X - X — X — "'• — X n-Q 

Thus, the decimal expansion of 10w/?+1 /(10m/7+1-(10w/7 + 10(w-1)p + —+ 10 + 1)) has u(n;p,l) 
appearing as coefficients of successive powers of 1/10, where u(0; p, 1) appears left of the deci-
mal. The repetend of the fraction l/(10M/7+1+10(w"1)/?+1+ 10(m~2)p+1+ --- + 10p+1+9) has 
u(n\ p, 1) appearing from right to left as before. We expect that the repetend 1/(10* • 11... lp -1), 

where (m + 1) l's appear in the multiplier of 10*, would generate the /7th terms of q interleaved 
sequences related to u(n\ p, q) from right to left as before, and that the repetend of the fraction 

10^+2*~V(10w;?+*-(ll...l)p) would generate those same interleaved sequences from left to 

right because we still have a "Pascal connection" available. The (mp + 1) coefficients of the pth 

row are generated by (11... l)p (there are m + 1 l's), and the geometric ratio is (11... \)P I \Qmp+q 

to select every /7th ro'w and move q units right, so we sum 1/101"*+(ll...l)/?/10w/?+1 + 

(11... l)2p I \02mp+q+l +.. . to form \0mP+2q~l / (10w/?+* - (11... 1)'). As before, we can write all 
the terms of u(n\ p, q), (p, q) = l, interleaved as part of the q sequences, left to right by 

IQW+q _ ( 1 0 ^ +10("-1)/7 +..• 10' +1 
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and from right to left in the repetend of 
1 

10^ • (iow/7+io(m~i)/? H- - - -+10^ -f-1) - r 
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