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Formulas for determining the Fibonacci numbers Fln and F2n_l in terms of Fn and Fn_l are 
well known as are some higher reduction formulas. For example, formulas for F3n and F3n_l are 
assigned as homework in Alfred [1], and in Chapter 17 of Dickson [3] there is a formula for Fpn 

whenp is odd. This note describes a technique for constructing "simplified" formulas for Fin and 
Fin_x in terms of Fn a n d i ^ . Two families of recursively defined polynomials can be used to 
parametrize these formulas. This parametrization can be applied to the study of the period of the 
Fibonacci sequence modulo m. These periods have been the subject of considerable study; see 
[4], [6], and [7] as well as [2] which contains generalizations to continued fractions. The period 
of the Fibonacci sequence modulo m is often close to the modulus in size, but Ehrlich [4] showed 
that the period of the Fibonacci sequence was surprisingly small for Fibonacci moduli and many 
other small periods do appear. His work utilized the reduction formulas for F2n and F2n_v We 
can generalize this result using the simplified reduction formulas for Fin and Fin_x for each even 
multiplier i. 

INTRODUCTION 

It is well known that the Fibonacci numbers can be computed by taking powers of a matrix. 
Namely, if 

T = (3 3K? 0-""ft I) 
Consider the matrix U, given below, that captures the symmetry of Tn and the fact that the (2, 2)-
entry is sum of the entries in the first row. Its powers, U\ can be used to get information about 
Tm. In particular, when a = Fn_{ and b = Fn, the first row gives reduction formulas for Fin_x and 
Fin in terms of Fn_x and Fn 

U = 
\ 

b a + b 
,U2 

u3 = 

fa2+b2 2ab+b2 ^ 
2ab+b2 a2 + lab + 2b2 

a3 + 3ab2+h3 3a2b + 3ab2+2b3 

3a2b + 3a*2 + 2b3 a3 + 3a2* + 6ab2 + 3b3 

The first row of U2 gives the reduction formulas: 

r2n-l - rn-\ ^ rn > r2n ~ jLrn-lrn ^ rn • 

Those equations and simple variations are well known. The first row of U3 gives additional, less 
well known reduction formulas: 
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F3n-\ = Fn-l + 3F
n-lFn> F3n = 3Fn-\Fn + 3Fn-lFn +2Fn • 

Higher reduction formulas can be produced by computing higher powers of U. It is easy to see 
that the entries in U1 are homogeneous polynomials of degree i in the variables a and b. Many 
other formulas for Fin and Fin_x in terms of Fn and Fn_x are possible since 

Fli = Ft-Fn-xFn +(-1)". 
In particular, consider simplifying the polynomials in U2 and U3 by the corresponding relation 

a2=b2-ab + (-l)n. (*) 
(One can think of this as a simplification that introduces a new formal parameter n, or as two 
separate simplifications, depending on whether n is even or odd.) The relation can be applied to 
a1 for all /' > 2. The result can be simplified again and the process repeated until the variable a 
appears only linearly. We say that a polynomial that has been simplified in this way is a-simpli-
fied. For example, the a-simplified form of the first row of U2 is 

((-l)"-ab + 2b2, 2ab + b2). 

The a-simplified form of the first row of U3 is 

((-l)na-(-l)"b + 5ab2, 3(-l)"h + 5b3). 

These give other reduction formulas for Fibonacci numbers: 

F2n-l=(-iy+F„(2F„-F„_l), F2„=F„(2F^1+F„), 

^ - i = (~ l ) " (^ i -Fn) + 5F„_tf, F3n = 3(-l)"F„ +5Fn
3. 

These formulas are simpler because of the reduction that took place. In fact, since these a-simpli-
fied formulas have few multiplications, they are useful for very rapid computation of large 
Fibonacci numbers, see [5]. Consider one more example as a preview. The first row of U6, a-
simplified, then written in a special way, and with n = 0 is: 

(l + b(3 + 5b2 )(-(a(l + 5b2 )) + 6(7 + 1 Ob2)), b(2a + b){\ + 5b2 )(3 + 5b2 )) 

This is interesting because, when reduced modulo any factor of b(3 + 5J2), this is congruent to 
(1, 0). This leads to repetition of the Fibonacci sequence at this stage modulo that factor. 

These a-simplified formulas can be computed directly by raising U to the appropriate power 
and applying identity (*) repeatedly, but in the next section we see that they can be computed 
quickly using simple recursive formulas. Properties of these a-simplified polynomials are 
established. In the last section, we use the special form of these a-simplified reduction formulas 
to see that for many infinite families of moduli, the Fibonacci sequence reduced by that modulus 
has a short period. 

PARAMETRIZING THE a-SIMPLIFIED REDUCTION FORMULAS 

We begin by defining the following intertwined polynomials in one variable b and with the 
parameter n giving a choice of sign. Only even indices are used for later convenience. 
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R, = 0, R2 = 1, Ry = S2j_2 + (-l)"R2J_4 fory > 2, 

[S0 = 2, S2 = 1, S2J = 5b2R2j_2 +(-l)nS2J_4 for;>2. 
1 ( * * ) 

Of course, this gives two sequences of polynomials, one sequence for odd n, the other for n even. 

Let i^y designate the sequence when n is even and R^j designate the sequence when n is odd. 

Lemma 1: 
(i) The polynomials R2j and S2j only include even degree terms. 
(ii) deg(R4j_2) = 2j-2, deg(S4j_2) = 2j-2, 
(iii) deg(R4j) = 2j-2, dQg(S4j) = 2j. 

(iv) The polynomial R%j has positive coefficients and R^j is identical except that every other even 
degree coefficient, beginning with the second highest, is the opposite of the corresponding 
coefficient of 0%. 

(v) The polynomial S2j has positive coefficients and S2J is identical except that every other even 
degree coefficient, beginning with the second highest, is the opposite of the corresponding 
coefficient of S2J . 

Proof: (i) This is true for j = 0 and j = 1 and is preserved by the recursive definitions in 
(**). 

(ii) and (iii) These are true for j = 0, 1. [Notice that deg(i?o) = -2 is an acceptable 
convention since RQ = 0 = Ob~2.] Checking the induction step for the four cases is direct: 

deg(i?4y+2) = deg(S4y + (-1)"i?4y_2) = max(2j, 2j-2) = 2/, 
degOV2) = deg(5b2R4j+(-iyS4j_2) = max(2 + 2/ - 2 , 2 J - 2 ) = 2y, 
deg(i?4y+4) = degC^a +(-l)wi?4;) - max(2j, 2j-2) = 2 j , 
deg(54y44) = deg(5Z>2i?4y+2 +(-l)n54 y) = max(2 + 2 j , 2y) - 27+ 2. 

Notice that in each case the highest-order term does not involve (-1)" so that the highest coeffi-
cients are positive and there is no possibility of cancellation. 

(iv) and (v) First we claim that R2j and S2j are homogeneous in the expressions b2 

and (-1)". The claim is true when j = 0 andj = 1. By parts (ii) and (iii) deg(i?2y) = ^%{S2j_2) 
and deg(*S2/) - 2 + deg(i?2y_2), thus, this homogeneity is preserved by the recursive definitions in 
(**); hence, the claim is true. As noted above, the highest terms of R2j and S2J do not involve 
any powers of (-l)w; by the claim, each term with lower powers of b2 will have complementary 
powers of (-1)"; hence, the alternation of signs when n is odd. • 

As an example, Sn =2{-lfn + 45(-l)2nb2 +150(-1)"64 + 125Z>6 has degree 6 and S^ =2 + 
4562 -15064 + 125b6. Table 1 contains the first few R%j and S2j polynomials. 
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Lemma 2: For j > 1, 

fi) ^ ^ ^ - ^ A - C - l ) 0 " ^ , 
(ii) i V A , + 2 -%S2/ = - ( - l ) ^ " . 

Proof: We prove (i) and (ii) simultaneously by induction. When j = 1, R4S0 - R2S2 = 
1-2-1-1 = (-1)0"7 and Ro$4-R2S2=0-S4-l-l = -(-lfn. Assuming (i) and (ii) hold for7, we 
see: 

R2j+4S2j ~ R2J+2S2j+2 = (S2j+2 + ( _ 1 ) " ^ 2 ; )$2J " ( ^ 2 ; + i'1)"R2j-2)S2j+2> b Y d e f -

=(-iy(R2Js2J-R2J_2s2J+2)=(-iyn 

using the induction hypothesis about part (ii). This completes the induction step of part (i). The 
induction step for part (ii) can be handled in a similar manner. • 

TABLE 1. The Polynomials R2j and S2j for Small j 

R%=0 = Ob'2 

R°2=l 

R°4=l 
R°6=3 + 5b2 

R%=2 + 5b2+25b4 

R?0 = 5 + 25b2 = 5(1 + 5b2 + 5b4 ) 

R?2 =3 + 20b2+25b4 = (l + 5ft2)(3 + 5ft2) 
R?4 = 7 + 70b2 +125ft4 +125ft6 

Rf6 = 4 + 50ft2 +I50b4 +125b6 = (2 + 5b2 )(2 + 20b2 + 25ft4) 
R?8 = 9 + 150ft2 + 675ft4 +1125ft6 +625ft8 

= (3 + 5ft2)(3 + 45ft2 +I50b4+125b6) 
R20 = 5 + 100ft2 + 525ft4 + 1000ft6 + 625ft8 

= 5(1 + 5ft2 + 5ft4 )(1 +15ft2 + 25ft4) 

Si =2 

S°2=l 

S°4=2+5b2 

S°6=l + 5b2 

S8°=2+20ft2+25ft4 

51°0=l+15ft2+25ft4 

(S1
0

2=2 + 45ft2+150ft4+125ft6=(2 + 5ft2)(l + 20ft2+25ft4) 
S,°4 = 1 + 30ft2 + 125ft4 + 125ft6 

S,°6 = 2 + 80ft2 + 500ft4 + 1000ft6 + 625ft8 

S,°8 = 1 + 50ft2 + 375ft4 + 875ft6 +625ft8 

= (l + 5ft2Xl+45ft2+150ft4+125ft6) 
S20 =2 + 125b2 + 1250b4 + 4375ft6 + 6250ft8 +3125ft10 

= (2 + 5ft2)(l + 60ft2 + 475ft4 + 1000ft6 + 625ft8) 

We are now able to parametrize the a-simplified formulas for the powers of U in terms of 
these polynomials. 

Theorem 3: For j > 1, define the following vector with entries that are polynomials in a and b 
(linear in a) and which includes the parity parameter n: 

Mj) = ( ( - i r +bR1J(-aS2J +b(5(-l)"R2J_2 +2S2J)), b(2a + b)RyS2j). 

The first row of U2j after being a-simplified is given by v(j). 

Proof: 
v(l) = ( ( - I f + bR2(-aS2 + 6(5(-l) '% + 2S2)), b(2a + b)R2S2) 

= ((-!)" -ab + 2b2,2ab + b2) 

as required. 
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Assuming this is true for j , we want to show it for j + 1; i.e., we need to show that the a-
simplified form of v(j)U2 is v(j +1). 

The second component of the a-simplified form of v(j)U2 is obtained by multiplying v(j) 
times the a-simplified form of the second column of U2: 

v(j)-(b(2a + b),(-iy +ab + 3b2) = b(2a + b)((-l)J" + 5(-l)nb2R2jR2 ._2 + (-!)»RyS2J + 5b2R2jS2J) 

= b(2a + b){5b2R2j{{-\)nR2j_2+S2j) + ̂  

using (-l)(y_1)" +R2jS2J - R2J+2S2J_2 fr°m Lemma 2(i). Then using the recursive definitions of 

R2j+2 and then S2J+2, we see the above is b(^a + b)R2j+2S2J+2 as required. 
The first component of the a-simplified form of v(j)U2 can be shown to be the first 

component of v(j +1) in a straightforward, but more tedious, manner. However, it is convenient 
to first simplify the identity required for the first component using the identity obtained above for 
the second component. We leave the details for the reader. • 

As an example, consider j = 4. By Theorem 3 we see the first row of IIs after being a-
simplified is: 

((-l)4" + bR,((2b - a)Ss + Sbi-lfR,), b(2a+b)R,Ss) 

where i^ = 3(-l)" +5b2,R^ = 2(-l)"+5b2, and Sg = 2(-l)2" +20(-l)"Z>2 +25b4 as can be seen 
from Table 1 and Lemma 1. Now letting a = Fn_x and b = F„,we get 

F^ = 1 + F„(2(-1)" +5F„2)((2JF„ -F„_1)(2 + 20(-l)"F„2
 +25F„4) + 5F„(-l)"(3(-ir +5F„2)) 

and 
FSn=F„(2F„_1+Fn)(2(-iy +5Fn

2)(2 + 20(-l)"Fn
2 +25Fn

4). 

In particular, when n = 3, we have F3 = 2, F2 - 1, so 

F23 - 1 + 2(-2 + 20)((4 -1)(2 - 80 + 400) -10(-3 + 20)) - 28657 
and 

F24 = 2(4)(-2 + 20)(2 - 80 + 400) - 46368, 

which are correct. 

Corollary 4: Let j > 1. The first row of U2j+l after being a-simplified is given by 

((-iyna-(-iyhR2JS2J +5ah2R2JR2J+2, 

(-iy»h + 2(-iyhR2JS2J +5b3R2JR2j+2). 
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Proof: Multiplying out v(j)U and reducing a2 by (*) gives 

((-iy"a-(-irbR2JS2J +5{-\)nab2R2jR2J_2 +5db2RlJS2J, 

(-iy»b + 2(-iybR2jS2j +5(-i)"b3R2JR2J_2 + 5b3R2JS2J). 

The recursive definition for R2j+2 simplifies that into the desired result. D 

Notice in particular that the second component depends on h but not on a. Thus, we get a 
formula for î 2/+i)n m terms of Fn alone. As an example, consider y = 3. Corollary 4 gives the a-
simplified form of the first row of U1 as: 

(-(-iybS6S6 +a((-V)3"+5b2R6Rs), (-1)3" b+bR6(2(-iy S6 + Sb2B,)) 

= (-3(-l)3"b-20(-\)2"b3 -25(-i)"b5 +a((-l)3" +30(-l)2"b2 + 125(-l)"b4 + 125b6), 

7(-l)3"b + 70(~l)2"b3 + 175(-l)"b5 + 125b7). 

So, if n is even, a = Fn_l, and b = Fn,we see: 

Fln„h=-3F„-20F„3-25Fn
5+Fn_1(l + 30Fn

2 + l25Fn
4 + 125F„6), 

Fln=7F„+70F3 + n5Fn
5 + l25F„7. 

In particular, if n = 2, Fn_x -Fx-\ and Fn = F2 = 1, so 

F13 = - 3 - 2 0 - 2 5 + 1 + 30 + 125 + 125 = 233 
and 

Fl4 =7 + 70 + 175 + 125 = 377 

as is easy to check. Of course, there are similar formulas when n is odd. 

SHORT PERIODS MODULO M 

As noted earlier, it is well known that the Fibonacci sequence is purely periodic when 
reduced modulo an integer m. We write & = k(m) to designate the period of the Fibonacci 
sequence modulo m. For example, consider the Fibonacci sequence and its residues modulo 
eight: 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 
0 1 1 2 3 5 0 5 5 2 7 1 0 1 1 2 3 

The repetition of the 0-1 pair at Fl2-Fl3 guarantees that the sequence modulo eight will repeat. 
Therefore, £(8) = 12. In general, we have 

Lemma 5: The period k = k(m) is the smallest positive number such that Fk = 0 (mod m) and 
Fk+l ^1 (mod m). 

Proof: By definition, k is the smallest positive integer such that Fk+n = Fn for all n > 0. It is 
clear that this implies Fk = F0 = 0 and Fk+l = Fx = 1. If there is any other occurrence of these 
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congruences, namely, Fj =0 = F0mdFJ+l = l = Fu then by adding those equation we see 

Fj+2 = F2 anc* by induction FJ+n = Fn for all n > 0. Thus, j > k by the definition of £, and we see 
that k is the smallest positive number satisfying the desired congruences. • 

Lemma 6: If Fc = 0 and Fc+l = 1 modulo /w, then &(ra)|c. 

Proof: We can write c = #£(/w) + r where 0 < r < k(m). Now F^+w = Fn modulo m implies 
that we can add multiples of k(rn) to the index and get a congruent number: 0 = Fc = Fc_gk^ = Fr 

and l = Fc+l =Fc+l_gk(^m) - Fr+l. Since r<k(m), we know by the previous lemma that r = 0. 
Hence, c = ^i(w) and so k(m) divides c. D 

The next theorems give techniques for generating many infinite families of moduli m with 
very small periods modulo m. The examples all have period bounded by a constant times the log-
arithm of the modulus. Ehrlich [4] showed that to be the case for the Fibonacci moduli; these 
would be given by the families below with trivial choice of gib) = h. 

Theorem 7: Let n be even and g(b) be any polynomial that divides bB%-(b) and let m = g{Fn) 
and k = k(m). Then k divides 2jn. 

Proof: If we let a = Fn_x and b = Fn in Theorem 3, we see that since all the terms of v(J) are 
divisible by bR^jib) except the term (-1);", we get 

(F2J„_1,F2jn) = v(j)^((-iy\0) modm 
= (1,0) since n is even. 

Thus, F2jn = 0 and F2jn+i = 1; thus, k divides 2jn by Lemma 6. • 

Theorem 8: Let n be odd and g(b) be any polynomial that divides bR^j{b) and let m - g(Fn) and 
k = k(m). Then 

(i) if7 is even, k divides 2jn; 

(ii) if7 is odd, then k divides 4jn. 

Proof: Again we let a = Fn_x and b - Fn in Theorem 3 to get 

(F2jn-uF2jn) = vU)^((-iy\0) modm. 

(i) If7 is even, then this is (1, 0); thus, F2Jn = 0 and F2jn_l = i^^+i = 1; hence, k divides 2jn 
by Lerruma 6. 

(II) If7 is odd, then this is (-1, 0); thus, F2n = 0 and F2jn_l = 1. In the first section we saw 
identities F2s_l = F?_x +FS

2 md F2s = 2FS_XFS + F / , with j = 2jn we see F4/n-1 s (-1)2 +02 = 1 
and FAjn = 0. So i^JW+1 = 1 and k divides Ajn by Lemma 6. • 

1993] 321 



FIBONACCI NUMBERS: REDUCTION FORMULAS AND SHORT PERIODS 

Since m is exponential in n (becasue the Fibonacci numbers are), these theorems give exam-
ples where the periods are bounded above by a constant times the logarithm of the modulus. 
Lower bounds will be considered after considering some examples. 

Table 2 shows the periods for moduli generated by taking g(b) = bRl(b) with n odd. Table 3 
gives periods for even n for the corresponding polynomial. 

Table 4 gives the periods for moduli near 196400. This gives some idea of how small the 
period £(196418) = 108 that also appears in Table 2 is relative to "typical" values. 

TABLE 2. Periods for Moduli Generated 

with «(ft) = ***(*) 

TABLE 3o Periods for Moduli Generated 

withg(b) = hR°6(b) 

n 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 

K 
1 
2 
5 
13 
34 
89 
233 
610 
1597 
4181 

™ = g(Fn) 

2 
34 
610 
10946 
196418 
3524578 
63245986 
1134903170 
20365011074 
365435296162 

k(m) 

3* 
36 
60 
84 
108 
132 
156 
180 
204 
228 

n 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

Fn 

1 
3 
8 
21 
55 
144 
377 
987 
2584 
6765 

m = g(Fn) 

8 
144 
2584 
46368 
832040 
14930352 
267914296 
4807526976 
86267571272 
1548008755920 

k(m) 

12 
24 
36 
48 
60 
72 
84 
96 
108 
120 

Period is less than the maximum allowed 
by the theorems. 

TABLE 4. Some Periods Near 196400 

m 
196400 
196401 
196402 
196403 
196404 
196405 
196406 
196407 
196408 
196409 
196410 
196411 
196412 

k(m) 
29400 
27720 
49416 
62028 
105672 
340 
56112 
43608 
147300 
197604 
196440 
12064 
98208 

m 
196413 
196414 
196415 
196416 
196417 
196418 
196419 
196420 
196421 
196422 
196423 
196424 
196425 

k(m) 
352 
196416 
9840 
480 
364 
108 
728 
240 
99216 
31032 
704 
25080 
264600 

Table 5 gives periods for g(b) = Ri0(b) with n even. These moduli get large quickly while 
the periods stay small. Table 6 gives values for a nontrivial divisor of bRl2. 
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TABLE 5. Periods for Moduli Generated TABLE 6. Periods for Moduli Generated with 
with g(b) = Rf0(b) a Factor of bRl2(b): g(b) = -b + 5b3 

n 

1 
3 
5 
7 
9 
11 
13 
15 

Fn 

1 
2 
5 
13 
34 
89 
233 
610 

m = g(Fn) 

4 
38 
620 
10972 
196486 
3524756 
63246452 
1134904390 

k(m) 

6* 
18* 
60 
84 
108 
132 
156 
180 

n 

2 
4 
6 
8 
10 
12 
14 
16 

Fn 

1 
3 
8 
21 
55 
89 
377 
987 

m = g{Fn) 

55 
2255 
104005 
4873055 
228841255 
10750060805 
505019869255 
23725155368255 

k(m) 

20 
40 
60 
80 
100 
120 
140 
160 

Notice that in these examples the periods k(m) were exactly the quantity that Theorems 7 and 8 
give as a multiple of the period except for a few small moduli in Table 2 and Table 6. In general, 
it appears that the bounds given in the theorems are met for sufficiently large n. While we cannot 
prove such a theorem, we can show that the periods cannot be much smaller than the given period 
for sufficiently large n for the full polynomial factors. 

Lemma 9: Let X be the golden ratio, then for n > 1 we have: xn~2 ̂ Fn< xn~l. 

Proof: The theorem is true for n - \ and n = 2 by direct computation: x~l < Fl = 1 = T°, 

x° = F2 = 1 < T. If it is true for n and n - 1, we can add inequalities to get: 

T»-3 + xn-l < p p < n-2 n-\ 
y I V —A. w _ | J. n _ y i * 

This simplifies to xn~l < Fn+l < xn, using x2 = x +1, completing the induction. • 

In Lemma 9, notice that strict inequality must hold for n > 3 since Fn is an integer. 

Lemma 10: Let m > 2 be a modulus and X the golden ratio, then k(m) > °^™*. 

Proof: We can pick n so that xn~l <m< xn. Since Fn < xn~l it is not possible for Fj to be 
reduced to zero modulo m for any j<n. Therefore, k{m)>n. However, m<xn implies 
n > \og{m) I log(r) and, hence, the conclusion. D 

While the upper bounds on k(m) given in Theorems 7 and 8 are 2jn or 4jn, we can show that 
for sufficiently large n that k{m) is not many factors smaller than those bounds. However, we 
conjecture that equality holds for sufficiently large n. 

Theorem 11: Suppose g(b) is R^j(b) or bR^-{b) withy > 3 where e is 0 or 1. Also let m = g(Fn) 
where n has the same parity as e and let k = k(m). Then k{m) > 03jn for sufficiently large n. 

Proof: In Lemma 1 and Table 1 we see the highest-order term of Ry (b) is at least five times 
bJ~l orbJ~2. Therefore, for sufficiently large n, m> Fj~2. From that inequality and Lemmas 9 
and 10, we see that, for sufficiently large n, 
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log(r) log(r) 10 

since (J-2)lj>y3 and ( « - 2 ) / « > % forw>20. D 
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