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1. INTRODUCTION 

The GCD Star of David Theorem asserts that 

It was first conjectured by H. W. Gould [2] in 1972. 
It has been proven and/or generalized by Hillman & Hoggatt [3? 4], Strauss [11], Hitotumatu 

& Sato [5], Ando [1], Singmaster [10], and Long & Ando [7, 8]. 
In this paper we will show some figures other than the hexagon described by the binomial 

coefficients in (1.1) that also have a gcd property. We also give a method whereby a new 
polygon with a gcd property can be constructed from known polygons with that property. 

2. TERMINOLOGY 

By a polygonal figure P in Pascal's triangle, we mean a simple closed polygonal curve whose 
vertices are entries of Pascal's triangle. We also use the same symbol to represent the set of 
entries on the curve. The six binomial coefficients in (1.1) form a hexagon with [f\ at its center. 
This hexagon will be called a fundamental hexagon. 

Following Long [6], we say P is tiled by fundamental hexagons if P is "covered" by a set § 
of fundamental hexagons F in such a way that 

(1) The vertices of each F in gf are coefficients in P or interior of P. 
(2) Each boundary coefficient of P is a vertex of precisely one F in gf. 
(3) Each interior coefficient of P is interior to some F in §f or is a vertex shared by precisely 

two elements in gf. 

If, in addition, the tiling has the property 

(4) For all Fx and F2 in g, Fx and F2 have at most one vertex in common. 

we say P has a restricted tiling. The three polygons in Figure 1 illustrate the three possibilities. 
The upper left figure has no tiling. The bottom figure has a restricted tiling. 

Let P be some configuration of binomial coefficients in Pascal's triangle. Suppose 
P = X KJ Y. If gcd X - gcd Y independent of the placement of P in Pascal's triangle, then P is 
said to have the gcd property with respect to X and Y. The fundamental hexagon has this 
property with respect to the two sets of three coefficients on the alternate vertices of the hexagon. 

An mxnxk hexagon is a hexagon oriented along the rows and main diagonals of Pascal's 
triangle with m,n,k,m,n, and k entries per side starting with m entries on top and going 
clockwise around the hexagon. 
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FIGURE 1. Some Polygons with Their Tilings 

3, THE GENERAL METHOD 

If we know that polygons Px and P2 have the gcd property with respect to certain sets, we 
can construct a larger polygon with a gcd property by using the following theorem. 

Theorem 1: Let Px and P2 be two configurations. Suppose Px has the gcd property with respect 
to X and 7 u ^ , and suppose P2 has the gcd property with respect to U and V^JS. Then 
P = X^JVKJY^JU has the gcd property with respect t o I u F a n d UuY. 

Proof: g c d X u F = gcd(7u1S,)uF = g c d 7 u ( ^ u F ) = gcd7uf/. 

Some figures satisfy the hypotheses of Theorem 1 in a very obvious way. We have the 
following corollary to Theorem 1. 

Corollary 1: Let P be a 2 x 2 x 2n, 2 x In x 2, or In x 2 x 2 hexagon in Pascal's triangle. Label 
the elements along the boundary ax, a2, a3,..., a4fl+2 in sequence. Let X = {a{, a3,..., a4n+l} and 
Y={a2,aA,...yaAn+2). Then gcdX = gcd7. 

Each of the hexagons described above admits a restricted tiling by n fundamental hexagons. 
The corollary is easily proved by induction on n with Theorem 1 providing the inductive step. 

4, OTHER POLYGONS WITH THE GCD PROPERTY 

In what follows, we will label polygons in the following manner unless otherwise noted. The 
left-most vertex on the top row will be labeled ax. Then as we travel clockwise along the 
boundary of the hexagon we label the coefficients a2, a3, a4,... . 

We will show that any polygon with a restricted tiling of fewer than five fundamental 
hexagons has the gcd property with respect to the sets {a,- \i odd} and {at \i even}. 

First, a polygon P that has such a tiling by one fundamental hexagon must be a fundamental 
hexagon. The GCD Star of David Theorem gives the desired result here. 

Suppose P has a restricted tiling by two fundamental hexagons. Then P is either the disjoint 
union of two fundamental hexagons or is a 2x2x4, 2x4x2 , o r a 4 x 2 x 2 hexagon. In the 
former case, each fundamental hexagon has the required gcd property and thus their disjoint union 
will also. The hexagons described in the latter case were shown in Corollary 1 to have the desired 
gcd property. 

At this point, we drop from consideration the polygons that are comprised of two or more 
components, since their gcd properties are inherited from the separate components. 
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Now, let P have a restricted tiling by three fundamental hexagons. There are two cases. 
Either some fundamental hexagon intersects only one of the other fundamental hexagons or each 
fundamental hexagon intersects both of the remaining two fundamental hexagons. 

The polygons in the first case have the desired gcd property as a result of Theorem 1; the 
polygons described in the second case are either 2 x 4 x 2 x 4 x 2 x 4 or 4 x 2 x 4 x 2 x 4 x 2 
hexagons. 

The former is shown with its restricted tiling in Figure 2. We will show that each of the 
hexagons has the gcd property with respect to the sets {ax, a3,..., ax x} and {a2, a4,..., a12 }. 
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FIGURE 2. A Diamond Formed by Three Fundamental Hexagons 

We start with the hexagon in Figure 2. First, we prove the following lemma. 

Lemma 1: With the notation of Figure 2, 

gcd[y,a1?a3?...,a11} = gcd{j,a2,a4,...,a12}. (4.1) 

Proof: Applying Theorem 1 for 

X = {a2,a4,a6,al2,y}, Y = {aua3,a5,a7}, 
U={y9a9,an}, V = {a^al0}, S = {x2}y 

(4.1) holds as claimed. 

We show that the element y is superfluous in this lemma. 

Theorem 2: With the notation of Figure 2, 

gcd{a1,a3,...?a11} = gcd{a2,a4?...,a12}. (4.2) 

Proof: We will make use of the notation vp(n) = e. By this we mean that pe \\n. We will 
drop the subscript p when no confusion arises about which base p is to be used. Also, the nota-
tion vp(X) - e will imply that pe ||gcd X. 

Now suppose that h = gcd{aua3, ...,au} andg" = gcd{a2,a4,...,a12} and that h> g. Then 
there exists a prime/? for which vp(h) = e> vp(g). 

If v(a6)>e, then v(x5) = v(a6-a5) >e, which implies v(y) = v(a7 - x5) > e. Then, from 
Lemma 1, v({y,a2,a4,...,an})>e. Thus, v(g)>e, and this is a contradiction. Similarly, if 
v(al0) > e or v(a2) > e, then using Lemma 1 withy replaced by x2 or x4, respectively, we have the 
same conclusion. Therefore, v(a2)<e, v(a6)<e, and v(al0)<e. 
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Now, ata5a9 = a2a6al0. (See [9].) We know that v{ala5a9) > 3e; thus, v(a2a6alQ) > 3e, and 
this is a contradiction. Hence, h<g. Similarly, g<h. Therefore, g = h and the theorem is 
proved. 

To show that the 4 x 2 x 4 x 2 x 4 x 2 hexagon has the gcd property with respect to the same 
two sets, we first prove a lemma. To help with this lemma, we label a polygon P a little differ-
ently. Assume one of the boundaries of P falls along a row or main diagonal of Pascal's triangle 
and that the boundary consists of four or more consecutive binomial coefficients. We wish to 
adjoin a fundamental hexagon H to P to the right of the diagonal n-k = c, to the left of the 
diagonal k = c, or below the row n = c. This is illustrated in Figure 3. We label P so that ax,a2, 
a3, and a4 are labeled as in Figure 3 and then continue around P in the direction indicated 
labeling the coefficients d5,a6,...,a2n. 
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FIGURE 3. Adding a Fundamental Hexagon to a Polygon 

Using this convention, we are now prepared to prove the following lemma. 

Lemma 2: Let P be a polygon in Pascal's triangle as labeled above. Suppose P has the gcd prop-
erty with respect to S - {a2i_x \i = 1,2,..., n) and T= {a2i \i = 1,2,..., n}; that is, gcd{ay \i odd} = 
gcd{af \i even}. Let H be the fundamental hexagon {a2, a3, xh x2, x3, x4} as in Figure 3. Then 
the polygon formed by {al,a4,a5,a6,...,a2n,x1,...,x4} has the gcd property with respect to 
X={a1?a5,a7,a9?...,a2w_1,x2,X4}-and7={a4,a6,...,a2M?x1,x3}. 

Proof: Suppose^ is a prime for which e = vp{X) > vp(Y). Then we have s - v(a3) < e. 
lft = v{a2) > e, then v({xux3, a3}) - v({a2, x2, x4}) > e. This is a contradiction. Hence, we 

have v(a2) <e. 
From this and v(X) = e, we have 

v(xj) = v(a2) = Kx5) - Kx3) -t <e. 

Thus, v(a2x2x4) >2e + ̂ and v(x1a3x3) = 2it + 5. We have 2t + s>2e + t, since a2x2x4 = Xja3x3. 
This reduces to t + ̂  > 2e, which is a contradiction. 

Hence, v{X) < v{Y) for any prime/?. The argument to show that v(Y) < v(X) is similar, and 
is omitted here. From this, it follows that gcd X - gcd 7. 

Theorem 3: Using the notation given in Figure 4 below, 

gcd{a1,a3,...,a11} = gcd{a2,a4,...,a12}. (4.3) 
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FIGURE 4. The 4 x 2 x 4 x 2 x 4 x 2 Hexagon 

Proof: The 4 x 2 x 2 hexagon at the top has the gcd property with respect to the sets 
{a1? a3, a5, x5, an} and {a2, a4, a6, x4, al2). Lemma 2 applies with P as the 4 x 2 x 2 hexagon and 
H as the fundamental hexagon centered at x6. This gives the desired result in (4.3). 

Now let P be any polygon that has a restricted tiling of four fundamental hexagons. If there 
is a fundamental hexagon in the tiling that intersects only one of the other fundamental hexagons 
in the tiling, the polygon P will have the desired gcd property. Theorem 1 would give the result 
using the fundamental hexagon as one polygon and the other component as the second polygon. 

Suppose then that each fundamental hexagon intersects at least two of the other fundamental 
hexagons. The only possibilities are shown with their tilings in Figure 5. They are the 2 x 4 x 4 , 
4 x 2 x 4 , and 4 x 4 x 2 hexagons. 

Each of these hexagons has the desired gcd property. Each of these three cases follows from 
Theorem 2 and Lemma 2. The fundamental hexagon has been placed on the upper right, bottom, 
and upper left, respectively, to obtain the three hexagons. 
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FIGURE 5. Hexagons Tiled by Four Fundamental Hexagons 

Therefore, we have the following theorem. 

Theorem 4: Lete P be any polygon in Pascal's triangle that admits a restricted tiling of four or 
fewer fundamental hexagons. Then P has the gcd property with respect to the sets {a- \i odd} and 
{at\i even}. 

This can also be extended to the 4 x 2 x 6 x 2 x 4 x 4 , the 4 x 4 x 4 x 2 x 6 x 2 , and the 
6 x 2 x 4 x 4 x 4 x 2 hexagons using Theorem 4 and Lemma 2. 

Consider the polygon in Figure 6 below. The 4 x 4 x 4 hexagon P defined by {al9 x1? x2, a6, 
a7,as, ...,a2Q} has been shown by Long & Ando [8] to have the gcd property with respect to 
{ax, x2, a7, a9,..., al9} and {xx, a6, a8,..., a20}.. There is a fundamental hexagon H centered at x3. 
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Apply Lemma 2 with this P and H. We see that the polygon of Figure 6 has the gcd property 
with respect to {al9a3,...9a19} and {a2,a4, ...,a20}. This polygon has no tiling, restricted or 
otherwise, of fundamental hexagons. 
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FIGURE 6e A Polygon that Has No Tiling 

Consider the polygon of Figure 7, which can be tiled by fundamental hexagons as illustrated. 
It does not have a restricted tiling. If X = {au a3,a5,a7} and 7={a2 )a4 ,a6 ,a8} ,we do not have 
gcd X = gcd 7. If we place the octagon so that ax = f ĵ ? w e have gcd X = 1292 and gcd Y = 646. 
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FIGURE 7e An Octagon 

We close with the following observation. A polygon possessing a restricted tiling seems to 
have the desired gcd property. It is by no means a necessary condition, as the polygon in Figure 6 
shows. However, possessing a tiling that is not a restricted tiling is not sufficient to guarantee the 
desired gcd property, as the octagon of Figure 7 shows. 
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