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1. INTRODUCTION 

The Sterling numbers of the first and second kind were introduced by Stirling in 1749 (see 
[9]). Recently, sevcial generalizations and extensions of the Stirling numbers are given and many 
combinatorial, probabilistic, and statistical applications are discussed (see [1], [2], [3], [4], and 
my 

In a recent paper [6], Koutras defined $(n, k; a) and S(n, k; a) [we used these symbols 
instead of $a(n, k) and Sa{nyk) to avoid ambiguity with Comtet's numbers], the noncentral Stir-
ling numbers of the first and second kind, by 

(t)„ = fjS(n,k;a)(t~a)k, (1.1) 

(t-a)" = Y.S(n,k-a)(t)k. (1.2) 
k=Q 

In this paper we use the following notations: 

(t'<*)n=U(t-aj)> (t/a)o = l, and (a^^Hia.-ajl k<L 
j'*k 

Comtet [5] defined sa(n,k) mdSa(n,k), the generalized Stirling numbers of the first and 
second kind associated with aQ,au..., an_x, by 

('/*)„ = 2>a(»,*)r*, (1-3) 

t^JTS^Vit/a),. (1.4) 
k=0 

The main purpose of this paper is to modify the noncentral Stirling numbers of the first and 
second kind. 

In sections 2 and 3 we define s(n, k\ a) and S(n, k; a), the multiparameter noncentral Stir-
ling numbers of the first and second kind; recurrence relations, generating functions, and explicit 
forms are obtained. 

Some special cases are discussed and a relation between the multiparameter noncentral 
Stirling numbers and other Stirling numbers are found. Finally, in section 4, some applications are 
derived. 
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2. THE MULTIPARAMETER NONCENTRAL STIRLING NUMBERS 
OF THE FIRST KIND 

Definition: Let t be a real number, n a nonnegative Integer, and a = (a0, al5..., a„_x) where 
a0 < ax < • - • < an_x are real numbers. 

We define the multiparameter noncentral Stirling numbers of the first kind, s(n, k; a0,au ..., 
a„_x), briefly denoted by s(n9 k; a), with parameters ~a = (a0, a1?..., a ^ ) , by 

(0» = E *(*,*; s> (*/«)*, (21) 
£=0 

where ^(0, 0; ~a) - 1 and s(«, A:; a) = 0 for k > n. 

Theorem 2.1: The multiparameter noncentral Stirling numbers of the first kind s(n, k; a) satisfy 
the recurrence relation 

s(n +1, k; a) = s(n, k-l;a) + (ak - ri)s(n, k; a) for k > 1, (2.2) 

where *s*(0, 0; a) = 1 ands(n, k;'a) = 0fork>n and 

s(n,0; a) = (a0-n + l)(aQ-n + 2) ••• (a0 -l)a0 = (a0)„. 

Proof: Since (t)n+l = (t)„[(t -ah) + (ak- rij], we have 

Y, s(n +1, k; a) (t /a)k=(t-ak)y£ $(n, k; a) (t I a)k + (ak - « ) £ ${n, k; a) (t I a)k 
k=0 k=0 k=0 

n+1 n 

= XX^ k~l'>a) (f la)k +(ak ~n)J]s(^ K a) (fla)k. 
k=l k=0 

Equating the coefficients of (t I a)k on both sides, we get (2.2). For i = 0we get s(n +1, 0; ~a) = 
(a0-ri)s(n, 0; a); therefore, s(n, 0; a) = (a0)n follows by induction. 

Remarks: We discuss the following special cases: 

i) If ai -a, i = 0,1,..., n -1, then from (2.2) we have 

s(n +1, k\ a) = s(n, k-l;a) + (a-ri)s(n, k; a), 

where s(n, k; a) denotes the noncentral Stirling numbers of the first kind that is defined by 
Koutras [6]. 

ii) If at - 0, i = 0,1, . . . ,«-1, then we have 

s(n + \,k) = s(n, k-l)- ns(n, k), 

where s(n, k) denotes the usual Stirling numbers of the first kind [9]. 

Hi) If ai:-1, / = 0,1, . . . ,«-1, then s(n,k;a) reduces to the C-numbers, where r = \, i.e., 
C(n,k,l) (see [3]). 
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Theorem 2,2: The multiparameter noncentral Stirling numbers of the first kind have the exponen-
tial generating function 

<Pk{t.a) = Ys{n.k:a)- = Y. , . • (2-3) 
n-t » ' ;=0 (« . ; ) ; • 

Proof: Let <j>k(t, a) be the exponential generating flinction of s(n. k; a), then 

<t>k(t;a) = 'Y s(n. k:~a) —. where 

Mt-a) = T s{>h0;a)t—=ft(a0)n
t—={l + t)a°. 

Differentiating both sides of (2.4) with respect to r, we get 

and from (2.2) we get 
n-\ 

(2.4) 

(n-iy. \=^i (Ti-1)! 
_ t'n~2 

-f Y s(w-1. k: a) 

= (/>k_{(t:a) + a,Jk(r. a ) - r ^ : (f; a); 

hence, 
_ a- _ 1 _ 

^(r;a)~7TTT^(r;a)"lT"^-l(r;a)-
Solving this difference-differential equation, we obtain (2.3). 

Theorem 23: The numbers s(n, k; a) have the following explicit form: 

where, in the second sum, the summation extends over all ordered w-tuples of integers (il, i2. ..., 
ir) satisfying the conditions ix + i2 n— ̂ ir-n and /:; > 1, /' = 1, 2...., r. 

Proof: From (2.3), 
£ n>t\aj k a , log(l+r) 

yr0 ( a . ) t ;=0 (a.).t 

= j . 1 * (a;log(l + r))r * 1 f<*rj(f ( m - i ^ Y 

and using Cauchy's rule of multiplication of infinite series, we get (2.5). 
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In the following, we find a relationship between s(n, k) and s(n, k\ a)'. From (2.1), we have 

n 

k=0 

hence, 
n n k 

7=0 fc=0 /=0 
( n 

7=0 U = / 

Equating the coefficients of f on both sides, we get 

n 

k=i 

Similarly, we can express s(n, k\ a) in terms of s(n, k). Since 

{t)„^s{n,k)tk, 

we have, from (1.4) and (2.1), 

k=0 

therefore, 

and hence, 

(0„ = 2>(»>*)IX(*.0('/a),; 
k=Q /=0 

/=o /=o Vit=/ y 

J(W, /; a) = £ J(w, *)iSa (*, 0-

Also we can express Sa(n, k) in terms of s(n, k; a). Since 

*" = X^,/c)(0t = ££(«,*)£s(M; «)(>/«),, 
k=0 

we have 

hence, 

fc=0 /=0 

( n 

7=0 7=0 U = / / 

^(n,0 = ̂ (».*K*.';a). 
Jfc=z 

(2.6) 

(2.7) 

(2.8) 

Combining equations (2.6) and (2.7), we get an orthogonality relation of sa(n, k) and Sa(n, k). 
Since 
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k=i £=k £=i\k=i J 

hence, 

k=i 

where 8ti is Kronecker's delta. 

3. THE MULTIPARAMETER NONCENTRAL STIRLING NUMBERS 
OF THE SECOND KIND 

Definition: Let t be a real number, n a nonnegative integer, and ~a = (a0, a1?..., an-i), where 
a0 <al<"< an_x are real numbers. 

We define S(n,k;a0,al,...,arJ_l), briefly denoted by $(n,k;a), the multiparameter non-
central Stirling numbers of the second kind with parameters ~a = (a0, au..., ccn_^)y by 

(tla)n = f^S(n,k-a)(t)k, (3.1) 

where S(0,0; "a) = 1 andS(n,k;~a) = 0 fork >n. 

Theorem 3.1: The numbers S(n, k\ a) satisfy the recurrence relation 

lS,(w,*;o) = 5 ( / i - l , * - l ; a ) + (ifc-aw_1)iS(/i-l,*;a). (3.2) 

Proof: Since (t/a)n =(t/a)rl_l(t-an_l) = (t/a)n_l[(t-k) + (k-an_l)], we obtain, from 
(3.1), 

Z5( / f > * ;a ) (0*=( / -*)§5(«- l ,A;a) (0 i +(*-a^ 1 ) | ; I 5 ( / i - l J * ;a ) (0 t j 
k=0 k=0 k=Q 

which gives us (3.2). 
We discuss the following special cases: 

i) If ai = a, i = 0,1,..., w-1, then from (3.2) we have 

iS(w, k\ a) = S(n-l,k-1; a) + (k - a)S{n -1, k\ a\ 
where ^(/i, k\ a) denotes the noncentral Stirling numbers of the second kind as defined 
byKoutras [6]. 

H) If at =0, i = 0,1,..., n - 1 , then from (3.2) we have 
S(n, k) = S(n -1, k -1) + kS(n -1, £), 

where S(n, k) denotes the Stirling numbers of the second kind (see [9]). 

Hi) If at =i, i = 0,1,..., n-1, then S(n, k; ~a) reduces to the C-numbers, where r = l, i.e., 
C(/i,*;l)(see[2]). 

In the following, we find a relationship between sa(n, k) and S(n, k; ~a). 
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From (3.1) we have 

(tla\ = £$(/!, k; a) {t)k = £s(/ i , k; a^kjy ; 

hence, 
k=0 k=0 /=0 

( n 

7 = 0 U = / 7=0 

and equating the coefficients of t1 on both sides, we get 

n 

k=i 

Similarly, we have 

therefore, 

£=Q A:=0 /=0 

f n 
£S(/i, /; 5) (0, = X 5>B(n, *)*(*, 0 I (0/, 

/=0 \k=i 7=0 

and hence, 

fc=z 

Also, we can express S(n, k) in terms of S(n, k; a). It follows from (1.4) that 

t" = 2X(»,k) (tla)k = £Sa(», k&SikJ; a) (0,. 
k=Q k=0 7=0 

Thus, 

Z *(*, o (0 /=I [ Z sa (/i, *>5(*, /, a) I (0/, 
implying that 

7=0 7=0 \k=i 

(3.3) 

(3.4) 

(3.5) S(n,i) = ^Sa(n,k)S(k,i;a). 
k=i 

Moreover, we can find a relationship between s(n, k; a), sa{n, k), and s(n, k; a), as follows, 
From (2.6) and (1.9) in [6], we get 

£=i 
S (?)(-«)*-/ *(A';«) = £ *(«> 4 «K (A 0; 

£=i 

hence, 

(3.6) £ f s(/i, £ a)sa (^ i) - f"J(-a)„_^s(/i, /; a) J = 0. 

Similarly, from (2.5) and equation (2.5a) in [6], we get 

£ ( s a (/*,*) W ^ (3.7) 
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4. APPLICATIONS 

i. From (2.6), and since 

s(n,i) = fj(-\)iL(n,k)s(k,i), 
k=i 

where L{n, k) denotes the Lah numbers (see [3]); hence, we obtain the combinatorial identity 

£ ( ( - l ) ' £ (n , k)s(k,i)-s{n, k; a)sa(k,ij) = 0. (4.1) 
k=i 

Similarly, from (2.6), and since 

s(n,i) = r-iYjC{n,k,r)s{k,i), 
k=i 

where C(w, k, r) denotes the C-numbers (see [3]), we have the combinatorial identity 

£ (s(n, k; a)sa (k, i) - r^Cin, k, r)s(k, /)) = 0. (4.2) 
k=i 

ii. W e find an orthogonality relation of s(n, k; a) and S(n, k; a). From (2.1) and (3.1), w e get 

k=0 k=0 V/=o 

hence, 

j^s(n,k;a)S(k,i;a) = Sni, (4.3) 

where £w/ is Kronecker's delta. 

iii. Let Mjk{x) denote the 5-spline of Curry Schoenberg with knots %j <%j+i<~-<£j+k 
(j e Z , k = 1,2,...) as defined in [7]. The moments ju£(k, E) of the 5-spline M^k(x) when the 
index y is equal to 0 is given by 

Mi(k,& = £oXiM0tk(x)dx, * = 0,1,. . . ;* = 1,2,...; 

From (3.3) and Proposition 3.1 in [7], we get 

A_,(*,0 = (i1 ^ ( M ^ M * , / ) . (4.4) 
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