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1. AIM OF THE PAPER 

Some years ago we were rather surprised at the integrity of the infinite sum 

£ Ft 121' = 2 (Ft the j t h Fibonacci number) (1.1) 
7=0 

which was obtained in [2] as a by-product result. Our mathematical curiosity led us to investigate 
(see [1] and [3]) the rational values (in particular, the integral values) of r for which the sum 

f/^/r' (1.2) 
gives a positive integer. 

The aim of this paper is to extend the results established in [1] and [3] by finding the sef of all 
rational values of r for which the sum 

S(r,n) = ftF„t/ri (r*0) (1.3) 
/=0 

[n is an arbitrary natural number, r is an arbitrary (nonzero) real quantity) gives & positive integer 
k. Since both r and k turn out to be Fibonacci number ratios, the results established in this paper 
can be viewed as a particular kind of Fibonacci identities that are believed to be new [see (4.7) 
and (4.8)]. 

Throughout the paper we shall make use of the following properties of the Fibonacci 
numbers and of the Lucas numbers Ln which are either available in [5] and [11] or can be readily 
derived by using the Binet forms for Fn and Ln: 

F2n=FnLn, (1.4) 

5i?=/*-4(-l)\ (1.5) 

L2„-2(-l)" = 5Fn
2, (1.6) 

F„ divides Fk iff n divides k (for n>3), (1.7) 

L„ = Lk (mod 5) iff n = * (mod 4), (1.8) 

L„+k-(-l)kLn_k=5F„Fk, (1.9) 

A»*+(-i)*4-* = 4 4 - 0-io) 
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2. THE VALUES OF r FOR WHICH S(r, n) IS A POSITIVE INTEGER 

The closed-form expression 

S(r,ri) = -z ^ (2.1) 
r2-rLn+(-iy 

which is valid if and only if the inequality 

\r\>an=[(l + S)/2f (2.2) 

is satisfied, can be obtained as a particular case of formula (5.2) in [6]. On the other hand, (2.1) 
and (2.2) can be obtained with the aid of the Binet form and the geometric series formula. If (2.2) 
is not satisfied, then S(r, n) diverges. Now let us ask ourselves the following question: 

"For which values rk of r does S{r,n) equal a positive integer kV 

To answer this question, let us equate the right-hand side of (2.1) to k, thus obtaining the second-
degree equation 

kr2-(Fn+kLn)r + k(-iy = 0 (2.3) 

in the unknown r, the roots of which are 

F„+kL„+yfD =Fn+kLn-4D 
1 2k ' 2 2k K ' ' 

where 
D = (Fn+kL„)2-4k2(-l)". (2.5) 

Observe that, by (1.4) and (1.5), D can be equivalently expressed as 

D = (5k2 + \)F2 + 2kF2n. (2.6) 

After some tedious manipulations involving the use of the Binet forms, it is seen that, for k, n > 1, 

[r.xz", 
(2.7) 

U = (-l)"/r2. 
From (2.7), we get the inequality |r2|< a", so that only the "plus" sign must be considered in (2.4) 
[see (2.2)]. It follows that S(r, n) equals a positive integer k iff 

rmr«mmF.+H£jD _ (28) 

3. THE RATIONAL VALUES OF r FOR WHICH S(r, n) 
IS A POSITIVE INTEGER 

Since the numbers r{ri) defined by (2.8) are, in general, irrational, let us ask ourselves 
whether or not there exist rational values .of them. This is equivalent to asking whether there exist 
positive integers k for which D is the square of an integer: the answer is in the affirmative, as we 
shall see in the sequel. 
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In [1] it has been proved that the set of rational numbers r for which S(r, 1) is a positive 
integer is 

{F2h+i/F2h\h = l,2,...}; (3.1) 
moreover, 

S{F2h+lIF2h,\) = F2hF2h+l. (3.2) 

For the general case (i.e., n > 1), we state the following 

Theorem 1 (Main Result): Let S(r, n) = E*0
 F

ni ^r' • 

(i) If n is even, then the set of all rational numbers r for which S(r, n) is a positive integer is 

{F(h+1)JFhn\h = l,2,...}; (3.3) 
moreover, 

$(F(h+l)nlFhn> n) = F{h+l)nFhn I K 0 A) 

(ii) Ifn is odd, then the set of all rational numbers r for which S(r, n) is a positive integer is 

{F(2h+l)n/F2hn\h=\,2,...}; (3.5) 

moreover, 
S(F(2h+l)n I F2hmn) = F{2h+\)nF2hn j Fn • ( 3 - 6 ) 

By means of formula (11) in [4], it can be proved that 

^ f ^ = 2 X , ("even) (3.7) 

and 
F^f2k" =t±F^-jyr («odd). (3.7) 

Pn i = l j=l 

Since (3.7) and (3.7") are nothing but marginal results, their detailed proofs are omitted. 

To prove Theorem 1 we have to prove the following two theorems. 

Theorem 2: 

(i) Ifn is even, the discriminant D - (5k2 + l)F2 +2kF2n [see (2.6)] is the square of an integer iff 
k=F(h+l)nF?m/Fn- ( 3 - 8 ) 

(ii) Ifn is odd, the discriminant D is the square of an integer iff 

k=F(2h+l)nF2hJF
n- 0-9) 

Theorem 3: 

(i) Ifn is even and (3.8) holds, then [cf. (2.8)] r(n) - F^h+l)n IFhn. 

(ii) Ifn is odd and (3.9) holds, then r(n) = F(2h+i)n/F2hn. 

1994] 247 



ON THE INTEGRITY OF CERTAIN FIBONACCI SUMS 

Proof of Theorem 2: We shall prove that, if D is the square of a generic integer, then k must 
necessarily be either of the form (3.8) (if n is even) or of the form (3.9) (if n is odd). Let us 
suppose that D = X2 (X GN). From (2.6) we can write 

5k2 F2 +2kF2n +F2-X2 = 0, (3.10) 
whence we have 

k = [-F2„ ±A/F2
2„ -5F2(F2 -X2)]/(5F2). (3.11) 

After some simple manipulations involving the use of (1.4), and taking into account that k must be 
positive (by hypothesis), (3.11) can be rewritten as 

k = [-L„+ylL2„-5Fn
2+5X2y(5Fn). (3.12) 

Now let us distinguish two cases according to the parity of n. 

Case 1: w is even. 
From (1.5), (3.12) becomes 

k = [-L„+j5X2
+4]/(5F„). (3.13) 

For k to be an integer, at least we must have that 

5X2+4 = Q2 (QeN). (3.14) 

The solution in integers of the above Pell equation is (e.g., see Lemma 1 in [7] or formulas (3.7)-
(3.8) in [1]) 

Q=Li„ X = F2s (5 = 0,1,2,...), (3.15) 

so that, from (3.13)-(3.15), we have 

k = (L2s-L„)/(5F„). (3.16) 

Now, for k to be a positive integer, both the inequality 

2s >n, (3.17) 
and the congruences 

L2s-Ln=0 (mod5), (3.18) 

L2s-L„^0 (modFJ (3.19) 

must simultaneously hold. Let us find conditions on s for (3.18) and (3.19) to be satisfied. From 
(3.18) and (1.8), we see that the congruence 

2s = n (mod4) (3.20) 

must hold. Now let us rewrite the numerator of (3.16) as 

^2s ~~ Ln - ^(2s+n)/2+(2s-n)/2 ~ ^{2s+n)l2-(2s-n)l2 (3.21) 

and observe that, in virtue of (3.20), the integer {2s-n)l2 must be even. Under this condition, 
we can use (1.9) to obtain 

^2s ~^n~ ^{2s-n)l2^{2s+n)l2 • ( 3 . 2 2 ) 
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First, let us consider the case w = 2. From (3.16) and (3.22), we obtain the equality 
k = Fs_tFs+1, where, from (3.17) and (3.20), s ranges over all odd integers greater than 1. It fol-
lows that the above equality can be rewritten as k = F2hF2{h+l) (h = 1,2,...) [cf. (3.8) for n - 2 
and take into account that F2 =1}. 

For n > 4 , the equality (3.22) shows clearly that (3.19) is satisfied iff [see (1.7)] 

2s-n ( 2s+n\ 
o r =o (mod??). 2 V 2 

Taking (3.17) into account, the above congruence can be written as 

^ L = hn(h = \,2,...). (3.23) 

From (3.23) we have 

^ y ^ = 0 + l ) / i 0 = 1,2,...). (3.24) 

Finally, from (3.16) and (3.22)-(3.24), we obtain the desired result 

5F„ ~ K 
0 = 1,2,...). 

Case 2: n is odd. 
The proof is analogous to that of Case 1, so it is simply sketched. From (1.5), the equality 

(3.12) and the Pell equation (3.14) become 

k = [-L„+Sx2 -4]/(5F„) (3.13-) 
and 

5X2-4 = Q2 (QeN), (3.14) 

respectively. The solution in integers of (3.14) is (see Lemma 2 in [7]) 

Q = L2s+l, X = F2s+1 ( j = 0 , l , 2 , . . . ) . (3.15) 

Therefore, by means of the same argument as that of Case 1, we get the following relations: 

k = (L2s+l-Ln)/(5F„X (3.16) 

25 + 1 > w, (3 AT) 

2s + l = n (mod4), (3.20) 

^2s+l ~~ Ln = 5F(2s+i-ny2F(2s+l+n)/2• (3.22) 

Taking (3.17) into account, and recalling that n is odd and (2s + l-n)l2 must be even [in virtue 
of (3.20)], we can write [see (1.7)] 

2s + l~n = 2hn ( / r=l ,2 , . . . ) . (3.23) 
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From (3.23 ^ we have 
2S + * + "=(2h + l)n (h = l,2,...). (3.240 

Finally, from (3.16') and (3.22>(3.24'), we obtain 

k = F2h"FW+1» (h = 1,2,...) Q.E.D. 

Proof of Theorem 3: Let us distinguish two cases according to the parity of n. 

Case 1: n is even. 
First, let us replace k by the right-hand side of (3.8) in (2.6), thus obtaining 

D = SF2
+l)nF2„ + F2 + 2F(h+l)nFhnLn "= D(n), (3.25) 

where (1.4) has been invoked. With the aid of (1.9) and (1.5), the relation (3.25) can be rewritten 
as 

D{n) = 5[L(2h+1)„ - Ln 15]2 + F2
n + 2L„{L{2h+V)„ -L„)/5 

= (L2
2h+l)n-Ll)/5 + Fn

2 = (Ll2M)n-L2„)/5 + (L2
n-4)/5 (3.26) 

= \^(2h+l)n ~ 4 ) / 5 = -T(2h+l)n' 

Then, let us replace k by the right-hand side of (3.8) and D by D(m) in (2.8), thus obtaining 

( x _ Fn + LnF(h+l)nFhn + FnF(2h+l)n def Nj_ 
r W ~ 117 J7 ~ M ' ^ } 

jLr(h+l)nrhn Iy 2 

Now, it is plain that, in order to prove the theorem, it is sufficient [cf. (3.3)] to prove that 
Nx = 2F^h+V)n. In fact, using (1.9), we get, from (3.27), the equality 

Nx = Fn + Ln(L(2h+l)n -Ln)/5 + (L2(h+l)n - L2hn) 15, 

whence, using (1.5) and (1.10), we have 

5Nl = -4 + LrtL(2/j+1)w + £2(/i+i)« ~ L2hn 
(3.2o) 

= -4 + L2^h+V)n + L2hn + L2Ql+i)n - L2hn = 2{L2(h+V)n - 2). 

Finally, using (1.6), equality (3.28) becomes 5Nl - 10F(^+1)w, whence, as desired, we obtain 
Nx = 2r^h+Y)n. 

Case 2: n odd. 
The proof is obtained by replacing k by the right-hand side of (3.9) and by using the same 

properties of Fibonacci numbers as those used in Case 1. Thus, the proof is omitted for the sake 
of brevity. We confine ourselves to putting into evidence that, in this case, we have 

W) = F«k+»n (3.260 
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and 
tfi = Fn+LnF{2h+l)nF2hn +FnF(4h+l)n = 2F2

2h+l)n. Q.E.D. 

4, CONCLUDING REMARKS 

The Fibonacci-type sum S(r, n) has been investigated and the rational values of r for which 
this sum is a positive integer have been determined. We can observe that, as required [see (2.2)], 

W > ? 5H*tDl>a». (4.!) 

More particularly, with the aid of the Binet form, we can see that the two quantities on the left-
hand side of (4.1) tend to an as h tends to infinity. 

Remark 1: Let us answer the question of whether or not there exist integral values of r for 
which S(r,ri) is a positive integer. From (1.7), (3.3), and (3.5), and taking into account that 
F2 = l divides Fk for all k, it follows that the only integral values of r for which S(r, n) is a 
positive integer are 

r = F2JFn = Ln (» = 2,4,...) (4.2) 
and 

r = F3/F2=2 [cf. (1.1)]. (4.3) 

Recalling that L0 = 2, it is apparent that the set of such values of r is constituted by all the even-
subscripted Lucas numbers. 

Remark 2: The generalized Fibonacci numbers U^m) have been considered in [1], [3], [6], [9], 
and [10]. These numbers are defined by 

U0(m) = 0, C/jCm) = 1, Ui(m) = mUi_l(m) + Ui_2(m) i f /> l , (4.4) 

where m is an arbitrary natural number. They give the Fibonacci numbers and the Pell numbers 
when m-\ and 2, respectively. OnceFhas been replaced by Uin (1.3), the solution in integers 
of the Pell equations (e.g., see [8], pp. 305-09) 

(m2+4)X2±4 = Q2 (4.5) 

allows to prove that the results established in Theorem 1 apply to the numbers Ui{jn) as well, 
provided the inequality \r\> [(m + ym2 +4)/2]w is satisfied. 

Finally, we point out that the results established in this paper give rise to the following Fibo-
nacci identities which we hope will be of some interest to the reader: 

£ A ^ k . = (frH)* hn {n>2 e v e n ? h > 1)? ( 4 6 ) 

^Fn£hrL=F(2M)nF2hn ( w > l o d d ^ > 1 } ( 4 7 ) 

/=0 ^(2h+l)n A* 
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Observe that the right-hand sides of (4.6) and (4.7) can be replaced by those of (3.7) and (3.7') 
according to the parity of n. As particular instances, letting h = 1 in (4.6) yields 

T^F = F2n ( n>2even) , (4.6*) 

whereas letting n = h = 1 in (4.7) yields (1.1). 
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