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1. INTRODUCTION 

In this paper we characterize the divisibility by 2 of the Stirling numbers of the second kind, 
S(n, k), where n is a sufficiently high power of 2. Let v2(r) denote the highest power of 2 that 
divides r. We show that there exists a function L(k) such that, for all n > L(k), v2 (k! S(2n, k)) = 
k-l hold, independently from n. (The independence follows from the periodicity of the Stirling 
numbers modulo any prime power.) For k > 5, the function L(k) can be chosen so that L(k) < 
k-2. We determine v2{k\S{2n +u,k)) for k>u>\, in particular for u = 1, 2, 3, and 4. We 
show how to calculate it for negative values, in particular for u - - 1 . The characterization is gen-
eralized for v2(k!S(c-2n + u, k)), where c> 0 denotes an arbitrary odd integer. 

2. PRELIMINARIES 

The Stirling number of the second kind S(n, k) is the number of partitions of n distinct 
elements into k nonempty subsets. The classical divisibility properties of the Stirling numbers are 
usually proved by combinatorial and number theoretical arguments. Here, we combine these 
approaches. Inductive proofs [1] and the generating function method [10] and [7] can also be 
used to prove congruences among combinatorial numbers. We note that Clarke [2] used an 
application of /?-adic integers to obtain results on the divisibility of Stirling numbers. 

We define the integer-valued order function, va (r), for all positive integers r and a > 1 by 
va(r) = q, where aq\r and aq+l%r, i.e., va(r) denotes the highest power of a that divides r. In this 
paper we are interested in characterizing va (r), where r = k! S(n, k) and a = 2. In a future paper, 
we plan to give a lower bound on va (k! S(n, k)) for a > 3. 

Lundell [10] discussed the divisibility by powers of a prime of the greatest common divisor of 
the set {k\S(n,k), m<k <n} for \<m<n. Other divisibility properties have been found by 
Nijenhuis & Wilf [11], and recently these results have been improved by Howard [5]. Davis [3] 
gives a method to determine the highest power of 2 that divides S(n, 5), i.e., v2(S(n, 5)). A simi-
lar method can be applied for S(n, 6) according to Davis. 

We will use the well-known recurrence relation for S(n,k), which can be proved by the 
inclusion-exclusion principle 

*!5(/i,*)=t(-i)*-,fty. (i) 
/=0 ^ ^ 

For each prime number/? and 1 <i <p-l, ip =i (mod/?), by Fermat's theorem, and this implies 
[l]that, for 2 <k <p-\ S(p, k) = 0 (mod/?). We note that S(p, 1) = S(p, p) = 1. 

Let d{k) be the sum of the digits in the binary representation of k. Using a lemma by 
Legendre [9], we get v2 (k!) = k - d(k). 
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Note that, for 1 < k < 4, identity (1) implies that v2(S(2n, k)) = d(k)-1. By other identities 
for Stirling numbers (cf Comtet [1], p. 227), v2 (S(2n, k)) = d(k) -1 for k, 2n - 3 < k < 2n. 

Classical combinatorial quantities (factorials, Bell numbers, Fibonacci numbers, etc.) often 
form sequences that eventually become periodic modulo any integer, as pointed out by I. Gessel. 
The 'Vertical" sequence of the Stirling numbers of the second kind, {S(n, k) {mo&pN)}n>0 is 
periodic, i.e., there exist nQ > k and n > 1 such that S(n + 7r,k) = S(n, k) (modpN) for n>n0. 

For N = 1, the minimum period was given by Nijenhuis & Wilf [11], and this result was 
extended for N>\ by Kwong ([7], Theorems 3.5-3.6). From now on, n{k\ pN) denotes the 
minimum period of the sequence of Stirling numbers {S(n, k)}n>k modulo pN, and n0(k, pN) > k 
stands for the smallest number of nonrepeating terms. Clearly, nQ(k, pN) < n0(k, pN+l). Kwong 
proved 

Theorem A (Kwong [7]): For k > max{4,p}9 n{k\ pN) = (p-l)pN+b^~2, where pb(k)~l <k< 
pb^k\ i.e., b{k) = \\ogpk\ 

From now on, we assume that p = 2, n>\ and apply Theorem A for this case. Let g(k) -
d(k) + h(k)-2 and c denote an odd integer. Identity (1) implies v2(S(c-2n, k)) = d(k)-l for 
1 <ifc^min{4,c-2',}We also set f(k) = fc(k) = m^x{g(k)Jlog2(n0(k,2d^)/c)]}. Therefore, 
c-2f(k) > nQ(k, 2d(k)). We note that g(k) < 2[log2 k}-2. Lemma 3 in [8] yields f(2m) = m for 
m>\ and c-\. 

In this paper we prove 

Theorem 1: For all positive integers k and n such that n>f(k), we have v2(k\S(c-2n, k)) = 
k -1 or, equivalently, v2 (S(c • 2n, k)) = d(k) -1. 

Numerical evidence suggests that the range might be extended for all n provided 2n > k and 
c = l. For example, for k = 7, we get g(7) = d(7) + b(7)-2 = 4 and w0(7,23) = 7; therefore, by 
Theorem 1, if n > / (7 ) = 4, then v2(S(2n, 7)) = v2{S{c-2n, 7)) = 2 for arbitrary positive integer c. 
Notice, however, that v2(S(%, 7)) = 2 also. We make the following 

Conjecture: For all k and 1 < k < 2n, we have v2 ($(2n ,k)) = d(k) -1. 

By Theorem 1, the Conjecture is true for all k~2m with m<n. 

In section 3 we prove Theorem 2, which gives the exact order of S(n, k) in a particular range 
for k whose size depends on v2{n). Theorem 2 is the key tool in proving Theorem 1. Its proof 
makes use of the periodicity of the Stirling numbers. It would be interesting to determine the 
function L(k), which is defined as the smallest integer ri such that v2(S(c-2n, k)) -d{k)-\ for 
all n >nf. By Theorem 2, we find that L(k) <k-2 and Theorem 1 improves the upper bound on 
L{k)iff{k)<k-2. 

In section 4 we obtain some consequences of Theorem 2 by extending it for Stirling numbers 
of the form S(c • 2n + u, k), where u= 1,2, etc. We show how to calculate v2 (S(c • 2" - 1, k)). In 
neither case does the order of S(c-2n +u, k) depend on n (if n is sufficiently large), in agreement 
with Theorem A. 
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3. TOOLS AND PROOFS 
We choose an integer t such that £<n. We shall generalize identity (1) for any modulus of 

the form 2*. Observe that, for any / even, in = 0 (mod2^), and for all / odd, {-l)k~l will have the 
same sign as (-1)*"1. Therefore, by identity (1), 

*!£(»,*) ^ ( - l ) * - 1 ^ ) " (mod2'). (2) 
/ odd 

The expression on the right-hand side of congruence (2) is called the partial Stirling number [10]. 
We explore identity (2) with different choices of n in order to find v2(S(n, k)). 

We shall need the following 

Theorem 2: Let c be an odd integer and let n be a nonnegative integer. If \<k <n + 2, then 
v2(k\S(c-2n,k)) = k-l, i.e., v2(S(c-2\k)) = d(k)-l 

Roughly speaking, Theorem 2 gives the exact value of v2(k\S(m, &)), for k > 2, if rn is divi-
sible by 2k~2. The higher the power of 2 that divides m, the larger the value of k that can be used. 
We prove Theorem 1 and then return to the proof of Theorem 2. 

Proof of Theorem 1: Without loss of generality, we assume that k>4. Observe that 
v2 (S(c • 2n, k)) = d(k) - 1 is equivalent to 

S(c-2n
9k) = 0 (mod2^)"1) (3) 

and 
S(c-2\k)±0 (mod 2 ^ ) . (4) 

The proof of identities (3) and (4) is by contradiction. To prove the former identity, we set 
N - d(k) -1, hence Theorem A yields 

7r(k;2N) = 2d^+b^-3 (5) 

where d(k) + b{k) - 3 < g(k) <f(k). 
We assume, to the contrary of the claim, that S{c-2f(k\ k) = a^0 (mod 2N). By Theorem 

A and the period given by (5), we obtain that, for every positive integer m > c, S{m-2^k\ k) = a 
# 0(mod2^). This is a contradiction, for one can select m so that m-2^^ becomes c-2n, with a 
large exponent n, and by Theorem 2, S(c-2n, k) = 0 (mod 2^) should be for sufficiently large n. 
It follows that, in fact, S(c-2f(k\ k) = 0(mod2Ar), and Theorem A implies S(c>2n,k) = 0 (mod 
2d{k)~l) for all n> f{k). 

To derive identity (4), we set N = d(k). In order to obtain a contradiction, we assume that 
S(c-2/(*),£)EE0(mod2^). Now, by Theorem A, we get 7r(k;2N) = 2d(k)+b(k)-\ where d(k) + 
b(k)-2 = g(k) <f(k). We proceed in a manner similar to that used above by noting that the 
periodicity now yields S(m-2^^k\ k) = 0(mod2N) for every positive integer m>c. It would 
imply that, for a sufficiently large n, S(C'2n, k) = 0 (mod 2^^) . However, this congruence con-
tradicts Theorem 2. It follows that S(c-2n, k)£0 (mod 2 ^ ) for n > f{k), and the proof is now 
complete. • 
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Proof of Theorem 2: We set m = c-2n and select an £ such that \<£<n + l. By Euler's 
theorem, 0(2£) = 2£~l; therefore, im =l(mod2^) if i is odd. By simple summation, identity (2) 
yields 

k! S(m, k) EE (-l)*-i £ (f) = (-2)k~l (mod 20; 
/ odd 

(6) 

therefore, v2(k!S(m,k)) = k-l, provided 0 < k - 1 <£. 
We have two cases if k = n + 2. If /w is odd, then w = 0 and k = 2. The claim is true, since 

S(m, 2) = 2m~l -1; therefore, v2 (2! £(m, 2)) = 1. If m is even, then we set £ = n + 2 > 3. By 
induction on £ > 3, we can derive i2 = 1 (mod2f) and identity (6) is verified again. • 

Remark: By setting £ = n + l, identity (6) implies the lower bound v2(A:!£(c-2n,k))>n + l, for 
k>n + 2. 

4. RELATED RESULTS 

We will use other special cases of identity (2). Similarly to the previous proof, we get that, 
for all u>0,n>£>l, and k <c-2n +u, 

k\S{c-2n +u,k)^{-l)k~lY^ (mod2'+2). (7) 
/ odd / odd 

We set 

^,«)=(-i)*-ltp)/". 
/odd 

By identity xu = Z"=0 S(w, j) (fjjl, we obtain 

^,«) = (-l^g(f)g5(«,/)(j^! = H)k-1 S5(«,/)y!l(J)(j 
/ odd / odd 

We focus on the case in which k > u and derive 

KK u)=(-i)"£s(«, 7)7(5) t (*: j)=(-2)*-11^^*) • (») 
/odd 

We introduce the notation r(&, u) = v2 (h(k, u)). Identity (8) implies that r(k, u)>k-u-\. Note 
that \h(k9 0)|= 2k~l and, for u > 1, 

^ ( M ) ! ^ " " - 1 <j]ju2u-JkJ <u{2u)u(kl2)u = u{uk)u. (9) 
7=1 

By identity (7), for u > 0 and any sufficiently large ^ and n>£, we have v2 (k! ̂ (c • 2" + 7/, £)) = 
r(&, w). In fact, n>£-r(k,u)-\ will suffice; for instance, n>k-2 will be large enough if u = 0 
(Theorem 2). By identity (9), we derive that r(k,u)<k-u-\ + i4log2 k + (u +1)log2 ?/; there-
fore, k-u-2 + \ulog2 A:4-(u +1)log2u\ can be chosen for n if w> 0. We note that, similarly to 
the proof of Theorem 1, this value might be decreased. 
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The values of r(k, u) can be calculated by identity (8). For example, if k > u > 0, then 

r(k, u) = 

k-\ 
k-2 + v2{k), 
k-3 + v2(k) + v2(k + l), 
k-4 + 2v2(k) + v2(k + 3), 

ifw = 0, 
if u = 1, 
ifi/ = 2, 
if w = 3, 

(10) 

[k-5 + v2(k) + v2(k + l) + v2(k2+5k-2\ ifw = 4. 

We state two special cases that can be proved basically differently; although, in the second case, 
only a partial proof comes out by the applied recurrence relations. 

Theorem 3: For k>2 and any sufficiently large n, v2(k!S(c• 2n +1, k)) = k-2 + v2(&). 

Proof: The proof follows from Theorem 2 and using the recurrence relation k! £(#*, k) = 
^ { ( A r - O l ^ w - l ^ - O + ytl^Cw-l,^)} with w = c-2"+l. Notice that, by Theorem 1, n> 
max{ f(k), f{k -1)} will be sufficiently large. D 

Theorem 4: For k > 3 and sufficiently large «, v2(k!^(c• 2" + 2, *)) = A:- 3 + v2(A:) + v2(k + l). 

Proof: By identity (10), we obtain v2(k\S(c-2" +2, k)) = r(k,2) = k-3 + v2(k) + v2(k + l). 
Observe that n > max{f(k), f(k -1), f(k - 2)} suffices. • 

Notice that we could have used the expansion 

k\S(c-2n+2,k) = k{(k-l)\S(c-2" + l,k-l) + k\S(c.2n + l,k)}. 

By Theorem 3, the first term of the second factor is divisible by a power of 2 with exponent 
k - 3 + v2 (k -1), while the second term is divisible by 2 at exponent k - 2 + v2 (k). The first factor 
contributes an additional exponent of v2(k) to the power of 2. We combine the two terms and 
find that there is always a unique term with the lowest exponent of 2 if k # 3 (mod 4). For k = 3 
(mod 4), however, this argument falls short and we are able to obtain only the lower bound k-\ 
on v2(k\S(c-2" +2, k)). 

It turns out that calculating v2(k\S(c-2n +u, k)) for negative integers u is more difficult than 
for positive values. The periodicity guarantees that the order does not depend on n (for suffi-
ciently large n). 

We extend the function h(k, u) for negative integers u. We will choose an appropriate value 
l>\ and then set n so that it satisfies the inequality c-2n +u>2£. We use the convenient nota-
tion Hi for the unique integer solution x of the congruence / • x = 1 (mod 2i+2) if / is odd. Simi-
larly to identity (7), we obtain 

*!5(C.2"+aJ*)S(-l)*-Itp¥i) " (mod2m). (11) 
/ odd 

For u < 0, we set 

Kk,u) = (-lf-lt{k
i)(j 

i odd 
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and express h{k, u) as a fraction y^y in lowest terms. Notice that v2(pk(u)) > k-d(k) holds, 
since k\ divides both sides of (11) for any sufficiently large £ . The order of v2(S(c-2n + u, k)) 
can be determined by choosing £^v2(pk(u))-l, and the actual order is v2(pk{u))-k + d(k). 
We remark that, for c - 1, the value of n can be set to v2 (pk (u)). 

We focus on the case of u - - 1 . Let 

/=1 V 

We get 

°^-w=m H-iH-m-^ »** 
By summation, it follows that 

Similarly, 

ak = % \ ~ % \ 

7 = 1 ^ -

U 'k\(-\)M £ l 
, = 1 7 

(cf. Hietala & Winter [4], or Solution to Problem E3052 in Amer. Math. Monthly 94.2 (1987): 
185). Combining these two identities, we obtain 

z odd 

For example, for k = 5, we get /?(5, -1) = &S., v2(/;5(-l)) = 7, and w > 7. E.g., v2 (5(127,5)) = 
v2(5(255,5)) = • • • = 4. We remark that v2(5(63,5)) = 4 holds, too. Notice that the recurrence 
relation S(N9K) = K'S(N-1,K) + S(N-1,K-1) implies that v2(5(c-2" -1,2™ -1) = 0 for 
every sufficiently large n. By the theory of p-adic numbers [6] and (12), we can derive that, for 
all sufficiently large n, 

v2(S(c2" -\,k)) = vhfi*r)-k+d(k) = v2(\ £ l\-k+d(k), 
2tH V 2 , 

where v2 (a I b) is defined as v2 (a) - v2 (b) if a and 6 are integers. This fact helps us to make 
observations for some special cases. For instance, if n > m > 3, then v2(S(c• 2" -1,2m)) > 2 holds 
and, therefore, v2(S(c-2n -I,2m +1)) = 1. Numerical evidence suggests that, for n>m>4, 
v2 (S(c • 2" -1,2m)) = 2m - 2, although we were unable to prove this. 

We can determine v2(5(c-2" - 1 , k)) for most of the odd values of k by systematically evalu-
ating v2 (Zf=1 ^-), and obtain 

Theorem 5: For all sufficiently large w, v2(5(c• 2" - 1 , £)) = <i(&)-v2(k + l), if A: > 1 is odd and 
k # 5 (mod 8) and & # 59 (mod 64) and it # 121 (mod 128). 

We leave the details of the proof to the reader. 
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We note that there is an alternative way of determining pk(-l). We set 

One can prove that 

k 1^2' ' 
*- I _ 2*- 1 2 t 1 r 

For other properties of Ik, see Comtet ([1], p. 294, Exercise 15). The latter recurrence relation 
simplifies the calculation of v2 (S(c • 2n -1, &)) for large values of k. 

We can use (7) in a slightly different way and gain information on the structure of the 
sequence {S(c-2n +k, k\S(c-2" + £ + !,£),•••, S((c + l)-2n + k-l,k) (mod 2q)} for every q, 
\<q<d(k)-1 and sufficiently large n. We observe that the sequence always starts with a one 
and ends with at least d(k) - q zeros. Note that, for every £ and u such that k>u>£>k- d(k), 

0 = k\S(u, k) EE (-1)*-1 X ( * V (mod 2'). 
i odd 

We set q = £ - k + d(k). Clearly, 1 < q < d{k) - 1 . By (7), we get that k! S(c • 2" + */, A) = 0 (mod 
2f) for all n > £ - 2 > 1. This observation yields that the d(k) - q consecutive terms, 

S(c-2n+u,k) (mod2<0, u = k-d(k) + q9k-d(k) + q + l,...,k-l, (13) 

are all zeros. Similarly, we can derive k! S(c• 2" + k,k) = k! # 0 (mod 2r), i.e., 5(c • 2" + &, A) = 1 
(mod 2q). Identities (8) and (10) imply that there might be many more zeros in the sequence at 
and after the term S(c-2n,k) (mod 2q). 

For example, if k = 7 and £ = 5, then S(c-2" +u, 7) = 0 (mod 21) for u = 5 and 6 and for all 
?? > 3. Similarly to the proof of Theorem 1, it follows that identity (13) holds if n > f(k). For 
instance, if k = 23 and £ = 21, then S(c-2n +u,23) = 0 (mod22) for w = 21 and 22 provided 
n > /(23) = 7. 
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