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It was conjectured in 1964 by A. Makowski & A. Schinzel [4] that, for every natural number 

vim). i 
• > -

n " 2 " 
They remarked also that even the weaker result 

(i) 

i n f ^ W ) > 0 (2) 
n 

is still unproved. Carl Pomerance [5] gave a proof of (2). Also S. W. Graham et al. [2] stated in 
the abstract, their result, 

.57 6 < l i m j r f « < U m s u p ^ i ) ) < 1, 

where Pm is the product of the first m primes. 

Notations We usep and q to denote exclusively primes, m\n to denote m dividing n, and m\n to 
denote m not dividing n. We use pa\\n to mean pa\n and pa+l\n. Also n is &-M1 means 
p\n impliespk\n 

First., we observe that validity of (1) for all w > 1 implies 

g ( * w » a i , (3) 
n 

for odd n. This can be seen easily from the fact that when n is odd, <j>(2ri) = </>(n). On the other 
hand, (3) implies (1) can be seen with the help of (4) below. It also implies that (1) is a strict 
inequality if 4|w. 

As in [5], we factor g(yw)) and obtain 

g(#»)) = <m) m 
n (fm n 

= n (i+r^+-vlnfi-^j (4) 
P°\\m\ p P P J P\n\ P) 

=nB nB n B (5) 

and it follows that if n is £-full, A > 2, then 
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for any n. (Of course, for odd and &-full n or &-full n with particular prime factors, we get better 
bounds from here.) In Theorem 1 below, we improve this bound in the case of any £-full n, for 
k>3. 

We can see from (5) that the essential problem is to prove the inequality 

nMV n f1-1) (6) 
M PJ q\npln(p-»y VJ 

In fact, the conjecture for odd n (3), implies (6) for odd n. On the other hand, it is clear that, 
with the help of (5), (6) implies (1) with 1 / (2^(2)) on the right side in place of 1 / 2. Pomerance 
interprets (6) as follows: For odd n > 1, 0(n) > the geometric mean of n and </>(<f>(n)). 

We mention the following consequence of the conjecture. Call a set of primes S = {2 = qx, 
q2,...,qt) self-filled if, for any prime/?, /?|n'=1(#r -1) implies p eS. The sets {2}, {2,3, 7} are, 
for example, self-filled sets. Let S as above be a self-filled set. Let T={pl,p2,--} be the set of 
primes of the form pr - qx

lq2
2 • • • q*' +1 for ax > 1 and the other ar > 0. Observe that, for r > 2, 

qr GT. Then the conjecture implies 
' , - l U . (7) 

P 2 n 
p<=T;p£S Indeed, assume the conjecture (3) holds for odd n. Let n - UpeT; p<x p. With the help of (5), 

we see that (3) implies (6) which, in turn, implies (7) since qr e T for r > 2 and x is arbitrary. 
[Observe that, when x is large enough, the set of prime factors of UpeT;p<x(P~fy 1S precisely $.] 
When S = {2}, the corresponding set T= T2 is the set of Fermat primes for which (7) is valid. 
This is easily checked thus, 

r i\ t 02r !( i v1 i i r 9-4 i / 

p<ELr2;p£S 
f->00r=o22r+l '-»°°2^ 22 *t+l 2J 

which is (7). This, of course, verifies (6) also, when n is composed only of primes of the form 
2a +1 and, hence, implies (1) with 1 / (2^(2)) on the right side instead of 1 / 2 there for such n. 

Theorem 1: Let k > 2. For &-full n, we have 

o - ( ^ ) ) ^ . 
n 

Theorem 2: We have, for infinitely many primes P, 

^(f)) > ft + o(^y lQg log p asp_^oo. 

Also, for all large n, we have 

aW*'' < (1 + o(l))er loglogn as ̂  -> oo. 

That is, the maximum order of °"(^w)) is er log log w. 
Theorem 2 quantifies a result of Alaoglu & Erdos [1]. 
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Proof of Theorem 1: Let n = Iik
r=l pa/. We note that Ilf=i Prr for 0 < er < ar -1, 1 < r < k, 

are different integers for different ^-tuples (eue2, ...,ek). Hence, the ala2...ak integers 
nj=i Prr (Pr ~ 1) a r e a^ distinct. All these axa2 ... % integers are divisors of ^(w) as well There-
fore, we have <j(<f>(n)) at least as large as the sum of these divisors. That is, 

a(<f,(n))>Yl((l + pr + -+Pr1)(Pr-l)) 
r=\ 

1 ZnYl\l-^-\>n/aicX 
r = P 

since ar > k for all r, and the proof of Theorem 1 is complete. 

Proof of Theorem 2: Let 2 = px, 3 = p2,... be the sequence of primes. Let Qk = Pilp2
2 

.. .pa
k\ where a r = 2 W + l, so that l°g/V J 

tf+1*/*. (8) 
Let m be the least integer such that P = Pk = Qkm +1 is prime. We see that 

&^exP iXlogPr 
v r= l 

„3£ 
ZPk 

and hence, by the theorem on least primes in arithmetic progression (see, e.g., [3]), we obtain 
P < pl°k (we do not need the best exponent), and thus, 

loglogP<(l + o(l))log^ as£->oo. (9) 

Now, remembering that P is prime, we get, using (4), that 

*P-<\-un n f'4+-4 
paU(P) 

>(\+o(i)yiogpk, 

using (8), and Mertens1 theorem and the lower bound in Theorem 2 now follows from (9). 
It follows from (5) that, for any w, 

^ ^ ^ n f 1 - 1 ] <a+o(i)Kiogiog^), 
n

 P\m\ PJ 
and the proof of Theorem 2 is complete. 
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