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It was conjectured in 1964 by A. Makowski & A. Schinzel [4] that, for every natural number

o(g(n) _ 1
e )

They remarked also that even the weaker result
inf ——“(";(”)) >0 @)

is still unproved. Carl Pomerance [5] gave a proof of (2). Also S. W. Graham et al. [2] stated in
the abstract, their result,
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where P, is the product of the first m primes.
Notation: We use p and g to denote exclusively primes, m|n to denote m dividing n, and mjn to
denote m not dividing n. We use p°n to mean pnand p®n. Also n is k-full means
pln implies p*|n

First, we observe that validity of (1) for all n > 1 implies

——G(i(")) >1, 3)

for odd n. This can be seen easily from the fact that when 7 is odd, ¢(2n) = ¢(n). On the other
hand, (3) implies (1) can be seen with the help of (4) below. It also implies that (1) is a strict
inequality if 4|n.

As in [5], we factor ﬂ—ffﬁ and obtain
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and it follows that if # is A-full, & > 2, then
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for any n. (Of course, for odd and A-full » or A-full » with particular prime factors, we get better
bounds from here.) In Theorem 1 below, we improve this bound in the case of any k-full n, for
k>3.

We can see from (5) that the essential problem is to prove the inequality

(-3),. (-7}

In fact, the conjecture for odd n (3), implies (6) for odd n. On the other hand, it is clear that,
with the help of (5), (6) implies (1) with 1/(24(2)) on the right side in place of 1/2. Pomerance
interprets (6) as follows: For odd n>1, ¢(n) > the geometric mean of # and @(g(n)).

We mention the following consequence of the conjecture. Call a set of primes § = {2 =g¢,,
45, ...,q,} self-filled if, for any prime p, p|I1._,(q, —1) implies p € S. The sets {2}, {2, 3, 7} are,
for example, self-filled sets. Let S as above be a self-filled set. Let 7'={p,, p,,---} be the set of
primes of the form p, =q,"g;* ---q/* +1 for a; 21 and the other a, >0. Observe that, for r > 2,
q, € T. Then the conjecture implies

11 (1 - l) >1 @)
peT; peS p 2

Indeed, assume the conjecture (3) holds for odd n. Let n=11 ,¢7, o<, . With the help of (5),
we see that (3) implies (6) which, in turn, implies (7) since g, €T for » >2 and x is arbitrary.
[Observe that, when x is large enough, the set of prime factors of I 7. ,<,(p—1) is precisely S.]
When § = {2}, the corresponding set 7' =7, is the set of Fermat primes for which (7) is valid.
This is easily checked thus,

t 2" =
11 (1—l)zlim]’1 2 =1iml[1——1,7) -4
2 22

pely; peS p =02 +1 t->e0 2 2

which is (7). This, of course, verifies (6) also, when » is composed only of primes of the form
2% +1 and, hence, implies (1) with 1/(2£(2)) on the right side instead of 1/2 there for such ».

Theorem 1: Let k >2. For k-full n, we have
o(¢(n) s 1
— 22> (k).
> )
Theorem 2: We have, for infinitely many primes P,
glj%f_’)_) > (1+o0(1))e’ loglog P as P — oo.
Also, for all large n, we have
o(¢(n)
n

<(1+o(1))e” loglogn asn— .

That is, the maximum order of @ is e’ loglogn.
Theorem 2 quantifies a result of Alaoglu & Erdos [1].
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Proof of Theorem 1: Let n=TI"_, p. We note that [1*, p* for 0<e <a -1, 1<r<k,
are different integers for different k-tuples (e, e,,...,e.). Hence, the aa,...q, integers
%, p (p, - 1) are all distinct. All these aya, ... q, integers are divisors of ¢(n) as well. There-
fore, we have o(#(n)) at least as large as the sum of these divisors. That is,

o) = [1(A+p,+-+p* )P, -D)

r=1

Znﬁ(l———la——JZn/;’(k),
r=1 b’

r

since a, > k for all 7, and the proof of Theorem 1 is complete.

Proof of Theorem 2: Let 2=p,, 3=p,,... be the sequence of primes. Let O, = p/" p;*
.- pg¥, where a, = 2[11‘(’)2—’;"] +1, so that
Pz pi. ®
Let m be the least integer such that P = B, = J,m+1 is prime. We see that
a 3k
Qk < exp(Zar logprJS Pr
r=1

and hence, by the theorem on least primes in arithmetic progression (see, e.g., [3]), we obtain
P < p® (we do not need the best exponent), and thus,

loglog P < (1+0(1))log p, ask — oo. )
Now, remembering that P is prime, we get, using (4), that

D) _ -1/ [T (1+
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using (8), and Mertens' theorem and the lower bound in Theorem 2 now follows from (9).
It follows from (5) that, for any »,

-1
ogm) _ 1 (1 _l) < (1+o(1))e” loglog ¢(),

h Plg(m)

and the proof of Theorem 2 is complete.
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