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INTRODUCTION 

In 1977, K B. Stolarsky [9] introduced an array of positive integers whose first row consists 
of the Fibonacci numbers {Fn :«>2}:1 2 3 5 8 13.... The subsequent rows are "generalized 
Fibonacci sequences." In fact, much more is true. The rows of the array are, in a sense, the set of 
all "positive Fibonacci sequences" of integers. This fact was proved by D. Morrison [7], who 
also introduced the WythofF array and proved that it has many of the properties of the original 
Stolarsky array. In order to study from a general point of view the properties which the Stolarsky 
and WythofF arrays have in common, the notion of'interspersion was introduced in [4]. The name 
"interspersion" was chosen to match property 14 in the definition given below. 

Much of the reason for interest in interspersions, especially those known as Stolarsky inter-
spersions, lies with the first column of such an array: its high degree of regularity versus the 
possible unavailability of a nice formula for the n^ term. In the case of the original Stolarsky and 
WythofF arrays, however, such formulas are known (see Section 5). From Example 1.1 (i) of [7, 
p. 307] and these formulas, we find that the first columns of the Stolarsky and WythofF arrays are 
uniformly distributed mod m for every positive integer m. In contrast to this, we construct in 
Section 4 a new Stolarsky interspersion for which every element of the first column, after the 
initial element 1, is even; we call it the even first column array (EFC). 

1. WHAT IS AN INTERSPERSION? 

Throughout this paper, the notation A = A(i, j) denotes an array of distinct positive integers 
a(i9 j) with increasing first column. For such A, let A = A(i, j) and A - A(i9 j) be the arrays of 
positive integers defined by 

a(i, j) = a(i, j +1) for / > 1, j > 1, 

and 
a(i, j) = the number of terms of A which are < a(i, j +1), 

respectively. Note that A is obtained from A by simply removing the first column of A. If the 
terms of A are then ordered as an increasing sequence, then a(i, j) is simply the rank of a(i, j) in 
this sequence. (The reader is urged to write out several terms of A using the array in Table 1.) 
We call A the rank array of A and prove in Theorem 1.1 that an array A is its own rank array ifF.4 
is an interspersion, as defined in [4] by the following properties: 

11. the rows of A comprise a partition of the positive integers; 
12. every row of A is an increasing sequence; 
13. every column of A is an increasing (possibly finite) sequence; 
14. if {Uj} and {Vj} are distinct rows of A, and/? and q are indices for which up<vq< up+l, then 

up+i<vg+l<up+2. 
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Perhaps the simplest example of an interspersion is given by a(i, j) = i + v+J~w+J~ , 

Theorem LI: An array A is an interspersion iff ̂ 4 = A. 

Proof: First, suppose A is an interspersion. Then, by Lemma 2 in [4], 

a(i, j +1) = a(i9 j) + C(a(i, j +1)), 

where C(m) denotes, for m > 1, the number of terms in the first column of A that are < m. Thus, 
a{i, j) is the number of terms of A that are < a(i, j +1) and are not in column 1. That is, a(i, j) 
= a(i, j ) , as required. 

For the converse, suppose a(i, j) =a(i,j) for all / andj. Then property II must hold, since 
a(i, j) ranges through all the positive integers without repetition. 

Now, since a(i,j) is the number of terms of A that are <a(i, j + 1) for all /' andj, we have 
a(i,j)<a(i,j + l), and this strengthens to a(i,j)<a(i,j + l) since the terms of A are distinct; 
thus, property 12 holds. 

By hypothesis, column 1 of A is increasing. Suppose for arbitrary j > 1 that column j is 
increasing, and suppose / > 1. The number of terms of A that are < a(i +1, j +1) is a(i +1, j ) , 
and this by the induction hypothesis exceeds a(i, j), which is the number of terms of A that are 
< a(i, j + T). Therefore, a(i +1, j +1) > a(i, j + 1), and property 13 holds. 

Arrange the numbers in A in increasing order, forming a sequence sn such that 

a(i, j) = sa(it j _ ^ = $a(U j). 

If up<vq< up+h as in 14, then su < sv < su , since sn is an increasing sequence. That is, prop-
erty 14 holds. • 

To summarize, Theorem 1.1 shows that an interspersion is an array A whose characteristic 
property is that for any successive terms u and v in any row, v is the uth term not in column 1. 

2. STOLARSKYINTERSPERSIONS 

Certain interspersions which have received much attention are the Stolarsky interspersions 
(e-g-> [4], [5], [6], [8], [9]). These are shown in [6] to be in one-to-one correspondence with the 
set of all zero-one sequences {8t} that begin with 1. The correspondence is given as follows: for 
each row number /, the number a(i, 2) in column 2 must be one of the two numbers 
[aa(i, 1) + St ], where a = (1 + V5) / 2; thus, the numbers in column 2 depend on those in column 1 
and, moreover, the numbers in columns numbered higher than 2 are determined by the recurrence 

a(iJ) = a(iJ-l) + a(iJ-2), y = 3,4, 5,.... (1) 

Accordingly, each row of a Stolarsky interspersion depends in a simple manner on whatever 
number occupies the first position in the row. This first number is always the least positive 
integer not appearing in any previous row. (See Tables 1-3.) We leave open the question of 
whether almost all Stolarsky interspersions have a uniformly distributed first column. 
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TABLE 1. The Original Stolarsky Array ([9], 1977) 

1 
4 
7 
9 
12 
14 
17 
20 
22 

2 
6 
11 
15 
19 
23 
28 
32 
36 

3 
10 
18 
24 
31 
37 
45 
52 
58 

5 
16 
29 
39 
50 
60 
73 
84 
94 

8 
26 
47 
63 
81 
97 
118 
136 
152 

13 
42 
76 
102 
131 
157 
191 
220 
246 

21 
68 
123 
165 
212 
254 
309 
356 
398 

34 
110 
199 
267 
343 
411 
500 
576 
644 

55 
178 
322 
432 
555 
665 
809 
932 
1042 

89 
288 
521 
699 
898 
1076 
1309 
1508 
1686 

144 
466 
843 
1131 

1453 
1741 

2118 

2440 
2728 

TABLE 2. The WytfaofT Array 

1 
4 
6 
9 
12 
14 
17 
19 
22 

2 
7 
10 
15 
20 
23 
28 
31 
36 

3 
11 
16 
24 
32 
37 
45 
50 
58 

5 
18 
26 
39 
52 
60 
73 
81 
94 

8 
29 
42 
63 
84 
97 
118 
131 
152 

13 
47 
68 
102 
136 
157 
191 
212 
246 

21 
76 
110 
165 
220 
254 
309 
343 
398 

34 
123 
178 
267 
356 
411 
500 
555 
644 

55 
199 
288 
432 
576 
665 
809 
898 
1042 

89 
322 
466 
699 
932 
1076 
1309 

1453 
1686 

144 
521 
754 
1131 

1508 
1741 
2118 

2351 

2728 

Construction 2.1: Every Stolarsky interspersion can be constructed inductively using the rules 
described above: row 1 must be l 2 3 5 8 13 21...; once k rows have been constructed, there 
are two and only two possibilities for row k + \. The first term u must be the least positive integer 
not already used in the first k rows. The second term can be either [ecu] or[aw + l], and the 
remaining terms are determined by the recurrence (1). 

For any given zero-one sequence 8 with initial term 1, the corresponding Stolarsky inter-
spersion A{5) would be easy to write out if only the first column were not, generally speaking, so 
mysterious. It turns out to be somewhat surprising how nearly determined these mysterious 
numbers are. This section is devoted to such determinations. We begin with a restatement of 
Lemma 1.5 of [6]. 

Lemma 2.2: Suppose {r,-} is a row of a Stolarsky interspersion. Then either 

hk = Wik-\\ and r2k+\ = Wik +1] for all k>\ or else 
i2k = Wik-i +1] and r2k+1 = [ar2k] for all * > 1. 

Lemma 23: Suppose u and v are adjacent terms in a row of a Stolarsky interspersion, and u < v. 
Then «<={[£], M -

Proof: By Lemma 2.2, v e{[aw],[aw + l]}, It is easy to confirm that if v = [aw], then 
u = [j*l ], and if v = [cos +1], then u = [%]. 

Theorem 2.4: Let A be a Stolarsky interspersion. Let {sn} be the ordered complement of the 
first column of A. Then sn G{[na], [na +1]} for n = 1,2,3,.... 
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Proof: By Lemma 3 of [4], we have sa(iJ) = a(i, j +1) for all ij. By Lemma 2.2, 

a(j, j +1) e{[aa(i, j)],[aa(i, j) + 1]}. 

Since a(i, j) ranges through all the positive integers n, we therefore have 
s
n e{[na],[na + l]} forw = l,2,3,... . D 

Lemma 2.5: Suppose {c,} and {st} are infinite complementary sequences of positive integers, 
m>0, and {crj is a zero-one sequence in which the maximal string length of ones is m. Let 
s* = st +ai and suppose s*+l *s* for all /. Let {c*} be the ordered complement of {s*}. Then 
0<c.-c* <m for all j . 

Proof: The sequence of positive integers can be represented in increasing order as a 
sequence of strings of two types: S strings consisting of consecutive s/s, and C strings consisting 
of consecutive c-'s. Each 5 string is followed by a C string, which is followed by an S string. 
Either sx = 1 or else cx = 1; we assume the former, noting that the proof in case ct = 1 can easily 
be obtained from what follows and is, therefore, omitted. Write the initial string as Sx = sly s2,..., 
s^ (= 1,2,..., /% where ̂  > 1), and the initial C string as Q = q, c2,..., c (= /ŵ  + l,...,ml +nl9 

where wx > 1). Following Q is iS2, and so on, so that our representation of the positive integers is 
as a sequence of strings: S1C1S2C2S3..., where St = ̂ _ i + 1 , . . . , ^ , q =^_i+1,...,cM/, w0 =w0 =0, 
\<ml<m2<- and 1 < nx < n2 < • • •. 

Let N denote the null string. Each string Si is a juxtaposition of two substrings, Lt and i^, 
which satisfy the following conditions: 

(i) If L;=J{, theni^*JV; 
(ii) If Lx * N, thenLt has the form sm{ +1, ...,5^+* for some &,->!, and s* = ̂  for 

#fJ_1+l<^</?i /_1+&/; 
(iii) If i^ *N9 theni?, has the form ^ +*+!,..., s^, and s* = st + 1 for mi_l-\-ki +\<l<mi. 

Consider an arbitrary triple L^Q. If Rj =N, then clearly s* = se for £ as in (ii) and c* = ĉ  for 
•̂_! + \<t<ni. Otherwise, we have s* = st for the terms of Lt and s* - st + 1 for those of B^, so 

t h a t <L+i = Vi+M-i> a n d c* = c^ f o r ^ = ̂ -1+2,...,/%. Thus, 0^^-c^mf-k^m for 
^ = H,--I +1, w,-_i + 2, ...,«,. Now, putting the triples Z^.Q together in order, we conclude that 
0<c£-c*<mforalll D 

Lemma 2.6: Supposed is a Stolarsky interspersion. Let {s*} be the ordered sequence of terms 
of ,4 that are not in the first column of^. Let sn = [na\ Let an = $* -sn. Then {a J is a zero-
one sequence, s*+l * 5* for all w, and the maximum string length of ones in {an} is 2. 

Proof: By Theorem 2.4, {(jM} is a zero-one sequence. Also, s*+1 ̂ ^* for all n, since the 
terms of A are distinct. Now suppose n is a positive integer and write 

na = [na] + el9 (n + 2)a = [n + 2a] + e2, where 0 < ^ <1 fori = 1,2. 

Then [{n + 2)a] - [no] = 2a-e2 + el9 which, as an integer within 1 of 2a (= 1 + V5), must be 3 or 
4. Therefore, the three integers [na] +1, [(n + l)a] +1, [(n + 2)a] +1 cannot be consecutive inte-
gers. Consequently, there is no string of ones of length > 3 in {a J. 
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Theorem 2.7: Let ut = a(i, 1), the Ith term of column 1 of a Stolarsky interspersion A. Then 
[ia]+i-2<ut< [ia] + i for every /. 

Proof: The ordered complement of {sf} = {[ia]} is {ci} = {[ia] + i}9 by the well-known 
Beatty theorem on complementary sequences (see Theorem XI in [1]). Lemmas 2.5 and 2.6 imply 
that 0 < Cj - ux < 2, from which the desired inequality immediately follows. D 

Corollary 2.8: Let ut = a(i, 1), the ith term of column 1 of a Stolarsky interspersion ,4. Let wt be 
the Ith term of the first column of the Wythoff array (see Table 2). Then -1 < wj - uf < 1 for every 

Proof: This follows immediately from Theorem 2.7 and the fact that wf - [ia] + / - 1 . D 

Lemma 2.9: If u is a positive integer, then exactly one of the following statements is true: 
(i) 3n3U = [na] and [{n +1)a] = u +1; 

(ii) 3 n 3 u = [na] and [(n +1)a] = u + 2; 
fiii) 3 « 3 w = [wa +1] and [(w +1)a] = u +1. 

Proof: If there exists w satisfying u = [na], then clearly [(?2 + l)a] must equal u + loru + 2, 
since 0 < a < 1. If w is not of the form [wa], then since 0 < a < 2, there must exist /? satisfying 
u - [na +1]. Since */=£[(« + l)a], we have \<na + a-u. Also, /ia +1 - u < 1, so that na + a -
f#<2. Thatis, u + l<na + a<u + 2, so that [(w + l)a] = i# +1. D 

Theorem 2.10: The first column of a Stolarsky interspersion does not contain two consecutive 
integers. 

Proof: If u is a positive integer in column 1 of a Stolarsky arrays, and u is as in (i) or (ii) in 
Lemma 2.9, then the immediate successor of n in a row of A is, by Lemma 2.2, u + l = [na + 1], so 
that u + 1 is not in column 1. 

By Lemma 2.9, the only remaining case is that u = [na +1] and w +1 = [(w + l)a]. Assume 
that both u and u + 1 lie in column 1 of A, and assume that u is the least such positive integer. By 
Lemma 2.2, the immediate successor of n in a row of A must then be u -1, and the immediate fol-
lower of n +1 must be u + 2. Since n< u, at least one of the numbers n and w +1 does not lie in 
column 1. If n is not in column 1, then by (1), n is immediately preceded by u - 1 - n; and if n +1 
is not in column 1, then « +1 is immediately preceded by u + 2 - (w +1) = u +1 - n. 

Now, w = ̂ a + l -6 ,
1 ,0<6 ,

1<l , so that ua-na2 +a-ael. Since 

a2 = a + l, (2) 

we have 
ua-na = n + a{\ - sx). (3) 

Also, u +1 = na + a - s2,0 < £2 < 1, so that i /a+a = na2 +a2 - as2, which yields 

ua-na = n + \-ae2. (4) 

Equations (3) and (4) show that a{\-ex) = \-as2 < 1, so that (3) implies n-[{u-n)a]. Now, 
by Lemma 2.2, in a row of A the integer u—n must immediately precede « o r n + 1, whichever of 
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these is not in column 1. However, it has already been proved that the immediate predecessor of 
n, if there is one, is u-n-1, and the immediate predecessor of w + 1, if there is one, is u-n + l. 
This contradiction shows that u and u + 1 cannot both lie in column 1 of A. • 

Lemma 2.11: \iu is a positive integer, then exactly one of the following statements is true: 
(i) 3n3u = [na + l] = [(n + l)a]; 

(ii) 3ri3u = [na +1] and [(n + l)a] = u +1; 
(iii) 3n3u = [na] and [{n - l)a +1] = u - 1 . 

The proof of Lemma 2.9 can serve as a guide for proving Lemma 2.11. We omit a proof but do 
pause to note that each of these two lemmas partitions the set of positive integers into three sub-
sets that can be expressed in terms of fractional parts. These are, in the order (i), (ii), (iii), as 
follows: 

\u: {ua} > 4 - 2a}, {u:2-a< {ua} < 4 - 2a}, and {u: {ua} < 2 - a} for Lemma 2.9, 

{u: 2 - a < {ua} < a -1}, {u: {ua} < 2 - a}, [u: {ua} > a -1} for Lemma 2.11. 

Theorem 2.12: Suppose successive terms of column 1 of a Stolarsky interspersion differ by 2: 
a(i +1,1) - a(i, 1) = 2. Then the integer a(i, 1) +1 lies in a column numbered greater than 2. 

Proof: Let u = a(i, 1) + 1. By Theorem 2.10, u does not lie in column 1; suppose u lies in 
column 2. Let n be the immediate predecessor of u in a row oiA. We shall see that n must be 
related to u as in one of the three cases in Lemma 2.11. The only possible exception would be if 
u = [pa] for some/? and also u - [qa +1] for some q. It is easy to check here that q = p-1. To 
see that n = p-ly suppose to the contrary that n = p. Then [ («- l )a +1] = w and [ («- l )a] = 
w - 1 ; now u -1 is in column 1, so that the immediate follower of n -1 in a row of ̂ 4 must be u, by 
Lemma 2.2. However, this contradicts the hypothesis that u follows n. 

In case (1), u = [na + l] = [(n + l)a]. In A, the integer n + \ must, by Lemma 2.2, be fol-
lowed by [{n + l)a] or [{n + l)a +1]. The former is i/, which follows w, not « + 1, and the latter is 
II + 1, which lies in column 1. For u as in (ii), a contradiction is similarly obtained. 

In case (iii), u<na, so that ua<na2 -na + n, and ua-na + \<n + \. Also, na-a + l 
<u, so that na2-a2 + a<ua, which yields n<ua-na +1. Therefore, [(u-n)a +1] = n. In a 
row ofyl, the term immediately following u-n is not [(u-n)a + l], for this number, coming just 
before u, must lie in column 1 and, thus, has no immediate predecessor. Therefore, by Lemma 
2.2, the follower must be [{u-ri)a\ which is n-1. By (1), the number u-l = u-n + [(u-ri)a] 
must lie in column 3, contrary to the hypothesis that it lies in column 1. Therefore, if as in (iii), u 
cannot lie in column 2. 

Since u does not lie in column 1 or column 2, it must, by property II, lie elsewhere. D 

3. TWO MORE THEOREMS ABOUT COLUMN 1 

Following Construction 2.1, we indicated that it is a difficult problem to formulate the first 
column of a Stolarsky interspersion in terms of an arbitrary given classification sequence, but that, 
surprisingly, in view of this difficulty, these terms can be "almost formulated" without great 
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difficulty. Theorem 2.7, especially, tells what we mean by "almost formulated," and in addition to 
it we present here two more theorems. 

Let S1 = {k: 3 Stolarsky interspersion A3k = a(i, 1) for some i}. Thus, £,- is the set of all 
possible values that can be taken by the Ith element of column 1 in a Stolarsky interspersion; e.g., 
$i = {!}, S2 = {4}, S3 = {6,7}, S4 = {9,10}, S5 = {11,12}, S6 = {14,15}, and S7 = {16,17,18}. 

Theorem 3.1: The sets {Sj}^=l are pairwise disjoint. 

Proof: Suppose two of the sets Sf and*?-, where j>i, have a common element. By 
Theorem 2.7, it is clear that j must be i + 1 and that the only number that St could possibly share 
with Si+l is 

[(/ + l)a + / - l ] = pa+ / ] . (5) 

Assuming this possibility, let B be a Stolarsky interspersion satisfying b(i +1,1) = [(? + V)a+/ -1] . 
Now, b(i,T) G{[ia + i-2],[ia + i-l],[ia+i]}, by Theorem 2.7. Since b(i,l)*[ia + i], by 
property II, and b(i,l)&[ia + i-l], by Theorem 2.10, we have b(i, l) = [ia+i-2]. 

Let 5: = {/a}, the fractional part, j ' a -p 'a ] , of ia. Then (5) can easily be proved equivalent 
to 

0 < £ < 2 - a . (6) 

Since b(i +1,1) = &(i, 1) + 2, the position of the number x - [ia +/ -1] in B is, by Theorem 2.12, 
in a column numbered > 3. Thus, the row of B containing x contains an immediate predecessor w 
of x and also an immediate predecessor v of w. Now x must be one of the numbers [wa] or 
[wa] +1, by Lemma 2.2. We consider these two cases separately. 

Case 1: x = [wa]. ByLemma2.3, w = [-̂  + l] = [x (a - l ) + l] = [xa ] -x + l. Thus, 

w = [a[ia +/ -1]] - [ia+t -1] +1 
= [{(a-l)[ia]+i) + 2-a] 
= [(a - l)(ia -e+i) + 2- a] 
= [ia2 -a£ + g-i + 2-a] 
= [ia-as + £ + 2-a] 
= [[ia} + (l + s)(2-a)] 
= [ia], 

since 0 < (1 + e)(2 - a) < 1. The equations w = [ia], x = [ia + / -1] , and x = w + v imply v = 1 - 1 . 
Then [va + 2] = [ia - a - 2] = [[ia] + {ia} + 2 - a], which by (6) equals w. Thus, neither [av] nor 
[av +1] equals w. This contradiction to Lemma 2.2 completes the proof for Case 1. 

Case 2: x = [wa + l]. By Lemma 2.3, w = [*-\ = [x(a-l)]9 so that 

w = [(ia - s)(a -1) + (a - l)(i -1)] 
= [ia + (l-a)(l + s)] 
= [ia-l], since - l < ( l - a ) ( l + ^)<0. 

The equations w = [ia-l], x = [ia+i -1], and x = w + v imply v = i. Then w - [va -1], contrary 
to Lemma 2.2. • 
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Theorem 3.2: Let S = I d St. Let F = {2,3,5,8,13,...}, the set of Fibonacci numbers F3 = 2, 
F4=3,...,Fn= Fn_x + Fn_2. Then S is the set of all positive integers not in F . 

Proof: Each number in F necessarily lies in row 1 and not in column 1. We shall show that, 
for any positive integer x other than these, there exists a Stolarsky interspersion containing x in its 
first column. 

Let Ek be the statement that, for all m< k such that m gF, there exists a Stolarsky inter-
spersion in which m occurs in the first column. Clearly Ek is true for k = 1, 2, 3, 4. Assume for 
arbitrary k > 4 that Ek is true. If k + l G F , then clearly Ek+l is true. Suppose k + \ gF . Let 
£ = [ ^ ] - p ^ ] . Since l < a < 2 , we have £ E { 0 , 1 } . If S = l, letm = [ ^ ] and obtain Jfc + 1 = 
[wa] , but if <5 = 0, let m = [-̂ -] and obtain i + l = [/wa + l]. 

Case 1; m gF. Here, by the induction hypothesis, there exists a Stolarsky interspersion i? 
containing m in its first column. Write rn = b(i0,l). We shall construct a new Stolarsky 
interspersion A as follows: Define a(i, j) = b(i, j) for all i < i0 -1, j > 1. Define a(70,1) = m. If 
& +1 = [ma] , then define a(/0 ,2) = [#ia +1], but if k +1 = [/wa +1], then define a(/0 ,2) = [ma]. 
Define the rest of row /0 recursively: a(iQ, j) = a(i0, j -1) + a(/0 ,j-2). Then finish defining 4̂ as 
in Construction 2.1. By Theorem 5 of [6], 4̂ contains k +1 in its first column. 

Case 2: m = Fp for some p . Here, 8 = 1, & + 2 = Fp + 1 = [ma +1], and k = [(m - l )a ] . Since 
m - 1 gF, there exists a Stolarsky interspersion B having m-1 in its first column. Necessarily, B 
contains k +2 in its first row, immediately following m. As in Case 1, we construct from B a 
Stolarsky interspersion A in which the immediate follower of m-1 is &. Now the only possible 
immediate predecessors of k +1 are m and m - 1 . Since neither of these is followed by k +1 in A, 
we conclude that k +1 lies in the first column of A D 

4. A NEW STOLARSKY INTERSPERSION: THE EVEN FIRST COLUMN ARRAY 

In addition to the two well-known Stolarsky interspersions of Tables 1 and 2 above, we 
introduce here a third, in which the only odd number in the first column is 1. Because of this 
property, we call this the even first column array, or EFC array. The array is defined by its 
classification sequence, namely, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... . In section 2, we encountered the 
sense in which a classification sequence defines a Stolarsky interspersion: if the sequence is {£,.}, 
then the number a(i, 2) in column 2 must be [aa(i, 1) + £,]. [Recall that a(i, 1) is always the least 
positive integer not in any previous row, and a(i,j) f o r j>3 is determined by (1).] The main 
objective in this section is to prove that the first column does indeed consist solely of even 
integers except for the first one. 

Throughout this section, let E = E(i,j), denote the EFC array with terms e{i,j), and let 
ut = e(i91). Table 3 shows that the first few ut are 1, 4, 6, 10, 12, 14, 16. We shall deal with the 
id, in pairs: 4, 6; 10, 12; 14, 16; etc. Each such pair u2k,u2k+l generates six terms um where 
m>2k. To describe these "higher w^'s," we define the u2k-tree, written as T{u2k)y as shown in 
Figure 1. 

The classification sequence has S2k = 1 and S2k+l - 0, so that (7) shows that the numbers v3 

and v4 must lie in column 2 of E, so that vx and v2 must, by Lemma 2.2, be higher um*s. We shall 
show below that vx and v2 are, respectively, of the forms u2p+l and u2 Assuming this for now, it 
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follows by Lemma 2.2 that w3, w4, w7, w8 must He in column 3 of 2?. Now wlyw2,w5? w6 must lie 
in E, but for each of these, its only possible immediate predecessor, as given by Lemma 2.3, is 
immediately followed by one of w3, w4, w7, w8. Therefore, w2, w2, w5, w6 are higher ww

!s. 

TABLE 3* The Even First Column Array 

1 
4 
6 

10 
12 
14 
16 
20 
22 
26 
28 
30 
32 
36 
38 
40 
42 

2 
7 
9 

17 
19 
23 
25 
33 
35 
43 
45 
49 
51 
59 
61 
65 
67 

3 
11 
15 
27 
31 
37 
41 
53 
57 
69 
73 
79 
83 
95 
99 

105 
109 

5 
18 
24 
44 
50 
60 
66 
86 
92 

112 
118 
128 
134 
154 
160 
170 
176 

8 
29 
39 
71 
81 
97 

107 
139 
149 
181 
191 
207 
217 
249 
259 
275 
285 

13 
47 
63 

115 
131 
157 
173 
225 
241 
293 
309 
335 
351 
403 
419 
445 
461 

21 
76 

102 
186 
212 
254 
280 
364 
390 
474 
500 
542 
568 
652 
678 
720 
746 

34 
123 
165 
301 
343 
411 
453 
589 
631 
767 
809 
877 
919 

1055 
1097 
1165 
1207 

55 
199 
267 
487 
555 
665 
733 
953 

1021 
1241 
1309 
1419 
1487 
1707 
1775 
1885 
1953 

89 
322 
432 
788 
898 

1076 
1186 
1542 
1652 
2008 
2118 
2296 
2406 
2762 
2872 
3050 
3160 

144 
521 
699 

1275 
1453 
1741 
1919 
2495 
2673 
3249 
3427 
3715 
3893 
4469 
4647 
4935 
5113 

u=uik y 
U = U2k+l X 

V, =[OK] < ^ " ^ 
yv2=[au + l] ^ " \ 

% v3 = [ecu +1] tg^** 
v4 = [au] ^ - ^ 

^ ^ W2=[OV2] 

w4=[av2+l\ 

w5=[av, + l] 
^ ^ w6=[av4] 

w8 = [av4 +1] 

FIGURE 1. The Tree T(u2k) 

Lemma 4.1: Suppose j and k are nonzero integers. Let a = (l + v5)/2. Then 

{lja]a} - {[ka}a} = (1 - a){{ja) - {ka}). (8) 

Proof: For any nonzero integer k9 we have 
1 = {-{a} {ka}} + {a} {ka} = {[ka]- {a} {ka}} + {a} {ka} 

= {ka + k- {ka}a} + {a}{ka} = [ka2 - {ka}a] + {ka} {a}, by (2) 
= {(ka - {ka})a} + {ka} {a} 
= {[ka]a} + {ka}{a}. 
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So, if j and k are nonzero integers, we have {[ja]a} + {ja}{a} - {[ka]a} + {ka}{a}, and (8) 
follows. D 

Lemma 4.2: Suppose j and k are nonzero integers. Let a = (1 + V5) / 2. Then 

{[ja2]a) - {[ka2]a} = (2 - a)({ja} - {ha}). (9) 

Proof: For any nonzero integer k, we have {[&a]a} + {ka}{a} = 1 from the proof of Lemma 
4.1, so that {[&a]a} + {ka} > 1, a fact used below: 

{[ka2]a} - {[ka + k]a} = {[ka]a + ka} - {[£a]a} + {ka} -1 
= {(ka - {ka})a} + {ka} -1 = [ka2 - {ka}a} + {ka} -1 

= {ka - {ka}a} + {ka} -1 = {{ka} - {ka}a} + {ka} -1 
= l-(a-l){ka} + {ka}-l 
= (2-a){ka}. 

So, if/ and k are nonzero integers, then (9) holds. 

Lemma 4.3: An integer u is of the form [ja] for some integer j iff {ua} > 2 - a. Equivalently, 
an integer w is of the form [ja] +j for some integer y' iff {ua} < 2 - a. (This inequality is stated 
without proof in [2].) 

Proof: Lemma 4.1 implies that, for any integers^ and k, we have {ja} > {ka} iff {[ja]a} < 
{[ka]a}. The well-known fact that max{{ja}:l<j<F2n} = {aF2n} implies, therefore, that 
tmn{{[ja]a} :1< j < F2n} = {[aF2n]a}. Since liml^00{[aF2lf]a} = 2 - a , we have {[ja]a}> 
2-a for all positive integers/ 

For the converse, Lemma 4.2 implies that, for any integers j and k, we have {ja} > {ka} iff 
{[ja2]a} > {[ka2]a}. The fact that max{{ja}:l<j <F2n} = {aF2n} implies, therefore, that 
m&x{{[ja2]a}:l<j<F2n} = {[a2F2Ja}. Since limJ I^0 0{[a2F2Ja} = 2 - a , we have, for all 
positive integers j , {[ja2]a} <2-a. But, by Beatty's theorem, as j ranges through the positive 
integers, the numbers [ja2] range through all the positive integers not of the form [ja]. Since 
[j®2] - [j&]+j, the proof is finished. • 

Lemma 4.4: Suppose u has the form 2[na] + 2n and v = [ua]. Let q = \j^\. Then 

v = 2[qa] + 2q + 2 and u + v = [va + l]. 

Proof: We have ^ - 1 < # < ^ , so that f - a < qa < f. Thus, qa is strictly less than the 
integer f. so that [qa] = f - 1 . Also q = [%] = [f (a -1)] = [*f] - f. Accordingly, 

= 2[[na]a + na]. 

By Lemma 4.3, {[na]a+na} < l / 2 , and this implies 2[[na]a+na] = [2[na]a + 2na], which is 
v. Next, 

2[qa] + 2q + 2 = u-2 + 2\ ua 
2 

-u + 2 = 2\ ua 
2 
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[va +1] = [a[^a]] +1 = [a(ua - s)] +1, where s - {ua}, 
= [ua2 - as] +1 = [ua + u-as] + \-ua-as- {ua - as} + u +1 
= M - a f - { « a - {wa} - {a} {ua}} + u-l 
= ua-as-{-{a}{ua}} + u + l, since ua-{ua} is an integer 
-ua- a{ua} + {a} {ua} + u = ua - {ua} + u 
= v + u 

Lemma 4,5: Suppose u has the form 2[na] + 2n + 2 and v = [wa + l]. Let g = [-^ + l]. Then 
v = 2[qa] + 2q and u + v = [va]. 

Proof: The proof is similar to that of Lemma 4.4 and is omitted. D 

Lemma 4.6: Suppose u has the form 2[na] + 2n mdu=u+2 in the 2%-tree of Figure 1 (7). 
Then v2 = vx + 4. 

Proof: By Beatty's theorem, [n/a] is not of the form [wa], so that, by Lemma 4.3, 
{a[nla]}<2-a. Substituting a + \ for IIa and multiplying by 2 gives 2{a([na]+n)}<4-2a. 
Then {a{[na] + n} <II2 since 4 - 2 a < l , so that {z/a} = {2a([wa]+7i} < 4 - 2 a . Since {2a} = 
2a-3, we have {wa + 2a} = {wa} + {2a}, from which follows [ua + 2a]-[ua] = 3. Equiva-
lently, v2 - vx = [wa + 2a +1] - [wa] = 4. • 

Lemma 4.7: In the u2k -tree (7), suppose u has the form 2[na] + 2w and u-u + 2. Let v = vx. 
Then v2 =v + 4, v3 = v + 1, v4 = v + 3. Moreover, wx = u+v,w2 = u + v + 6,w3 =u + v + l, and 
w4 =i/ + v + 7; also, w5 = w + v + 2,w6 = u + v + 2,w7 = u + v + l, and w8 = w + v + 5. 

Proof: Clearly v3 =v + l. By Lemma 4.6, v2 = v + 4, so that v4 =v + 3. By Lemma 4.4, 
wx - u + v, so that w3 -u + v-I. Now w2 =[ov2], which by Lemma 4.5 equals u + v, which is 
u + v + 6, and then w4 =u + v + 7. By recurrence (1), w7 -u + v + l andw8 =u + v + 5, and from 
these follow w5=u + v + 2 and w6 = u + v + 4. • 

Under the assumption that u (= u2k) is of the form 2[na] + 2n and u-u + 2, we can sum-
marize Lemma 4.7 by rewirting the tree T{u2k) in (7) with new labels: 

v = [wa] (type 6) 
v + 4 (type 5) 

u + v (type 1) 
u + v + 6 (type 4) 

u + v.-I 
u + v + 7 

u + v+ 2 (type 2) 
u + v+ 4 (type 3) 

(10) 

FIGURE 2. The Tree T(u2k), Relabeled 

1994] 311 



THE FIRST COLUMN OF AN INTERSPERSION 

Lemma 4.8: Suppose k is a positive integer, u = 2[ka] + 2kmdii = 2[ka] + 2k + 2. Then 
u-u = 4 or u-u- 6, according as {ka} <2-aor {ka}>2-a. 

Proof; The proof is easy and is omitted. D 

Lemma 4.9: Let E be the EFC array. The numbers uk in column 1 of E are given by u% = 1 and 

u2n=2[na] + 2n, (11) 

u2n+l = 2[na] + 2/I + 2 (12) 

fbr>i=l,2,3, ... . 
Proof: It is easy to check that (11) and (12) hold for 1 < n < 3 and that in the tree T(u2) we 

find u3 = 6 of type 6, u4 = 10 of type 5 (and also of type 1), u5 = 12 of type 2, w6 = 14 of type 3, 
u7 - 16 of type 4. Suppose now that m > 7, and as an induction hypothesis, assume that for every 
h satisfying 3<h<m the following conditions hold: 

(i) there exists k such that 2k <h-2 and uh is a vertex of tree T(u2k), and in that tree, % 
is of one of the six types identified in (10); 

(ii) in T(u2k), if uh is of type 1, 3, or 5, then h is even, and if h = 2p, then 
uh = 2[pa] + 2p; 

(iii) in T(u2k), if % is of type 2, 4, or 6, then h is odd, and if A = 2/? + l, then 
^ = 2[jpa] + 2p + 2. 

Case 1: ^ is of type 1 (or type 3) in a tree T(u2k). By (ii), um =2[pa] + 2p, where 
m = 2p. Theorem 2.10 and Lemma 4.7 then imply um+l = 2[pa] + 2p + 2, so that um+1 is of type 
2 (or type 4) and satisfies (12). 

Case 2: um is of type 2 in a tree T(u2k). By (iii), um = 2[pa] + 2p + 2, where m = 2p + l. 
Theorem 2.10 and Lemma 4.7 then imply um+l =2[jpa] + 2/? + 4 = 2[(p + l)a] + 2(p + l), so that 
um+l is of type 3 and satisfies (12). 

Case 3; um is of type 4 in a tree T(u2k). As in the proof of Lemma 4.6, we have {au2k} < 
4 - 2a, so that 

4 a - 7 . , 4 a - 6 A „ 
-<{m/2yk}< - = 4 - 2 a , 

a - 1 a - 1 
which implies 0 < 4 a - 6 + (l-a){aw2Jt} <1, so that 6 = [(l-a){aw2Jt} + 4a] and 6 = [au2k-
[au2k] - a{cm2A:} + 4a]. Adding u2k + [au2k] to both sides and applying Lemma 4.7 give 

um = i®u2k + uik ~ a{au2k} + 4a] 
= [a(au2k-{au2k}+ 4)1 by (2) 
= [a([ow2J + 4)], 

which is the number of type 6 in tree T([au2k] + 4). By Lemma 4.6, the number um +4 is of type 
5 in tree 7([aw2^] + 4). 

By Theorem 2.7, umU < [(m + l)a] + /w +1 and [(/w - 3)a] + m - 5 < ww_3, so that 

' ' u
m+i ~ ̂ m-3 * [(»> + l)a] - [(in - 3)a] + 6 ^ 11.472, 
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but, since um+l - um_3 is an integer, we have 

" m + l - ^ 3 ^ 1 2 . (13) 

Since um is of type 4, the number um_i must, by the induction hypothesis, be of type 4 - / , for 
i = 1,2, 3, so that um = um_x + 2, um_l = um_2 + 2, and tiw_2 = um_3 + 2; these imply 

ttm-*«-3=8- ( 1 4 ) 

By Theorem 2.7, z/w+1 e {WW +2, ww +3, ^m +4}, so that (13) and (14) force um+l to be um +4. 
By the induction hypothesis, um - 2[pa] + 2p + 2, where m = 2p + l, um_1 = 2[/?a] + 2jp, and 

^w-2 = 2[(/> ~ 1)^1 + 2(P ~ 1) + 2. The equation um+l - um_2 = 2 therefore easily yields 

[pa]-[(p-l)a] = l (15) 

Now, if [(p + T)a]-[pa] = 1, this and (15) imply [(p + l)a]-[(p-l)a] = 2, which is easily seen 
to be impossible, since \l2<a<\. Therefore, [(p + l)a]-[pa] = 2, so that unH.l=um+4 = 
2[pa] + 2p + 6 = 2[(p + l)a] + 2(j> + l), and (11) holds. 

Case 4: um is of type 5 in a tree T(u2k). Before breaking this into two subcases, we note 
that 

{au2k} = {a(2[ka] + 2k)} = {4ka-2a{ka}} = (4-2a){ka}. (16) 

Case 4.1: {ka)>2-a. In this case, (16) implies {a&2 i k}>(4-2a)(2-a) = 2(5-3a). 
The inequality {au2k} >5-3a implies 

„ ^ 2 a - 3 . . ^ „ 5-3a = < {au2k } < 1 < 2a - 2, 
a 

which implies [2 a - a{au2k }] = 2, so that 
[au2k+4] = [om2k~\ + 2 + [2a-a{au2k}~\ 

= [au2k -u2k +21 + [a2u2k-a{au2k}-om2k +2a] 
= [au2k - u2k + 2] + [a[au2k - u2k + 2]]. 

This shows that the number um of type 5 in a tree T(u2k), namely, [au2k +4], is the same as the 
number of type 1 in tree T(au2k -u2k +2). It follows from Case 1 that um+l is of type 2 in tree 
T{au2k ~u2k +2) and satisfies the required conditions. 

Case 4.2: {ha} >2-a. Again (16) applies, giving {au2k} < 2(5 - 3a) < 7 - 4a = 
1 - {4a}, so that {au2k} + {4a} < 1. Consequently, {au2k + 4a} - {au2k} = 4a - 6, so that 

[(u2k+4)a] = [au2k+4] + 2. (17) 

Since m>l, we have 2k <m-2, by hypothesis (i), so that Lemma 4.8 gives u2k+2 -u2k +4. 
Then (17) implies that um+l is the number of type 6 in tree T(u2k+2), and (12) holds. 

Case 5: um is of type 6 in a tree T(u2k). We already know by Lemma 4.6 that the number 
um +4 is of type 5 in tree T{u2k). If um+l -um+2, then we would have um+l-um_3 = 10 and a 
contradiction as in the proof for Case 3. Moreover, um+l ~um cannot be 1 or 3, by Theorem 2.10. 
Therefore, um+l =um+4, and as in the proof for Case 3, we find that (11) holds. 
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We have now shown that the conditions (i), (ii), and (iii) stated in the induction hypothesis all 
hold for h - m +1. Therefore, equations (11) and (12) hold for all positive integers n. • 

5. CONCLUSION 

It is clear from the induction method of the proof of Theorem 4.9 that the EFC array is the 
only Stolarsky interspersion having only even numbers in the first column, except for the initial 1. 

We recount the connections between certain classification sequences {<?,} and the first 
columns of the associated Stolarsky interspersions {ut}. 

Wythoff Array (Table 2): St = 1 for all /, and ut = [ia]+i -1 for all /. In fact, all the terms 
a(i, j) of the Wythoff array are conveniently expressible: a(i, j) - [ia]FJ+1 + (/ - X)Fj. Corollary 
2.8 shows that the Wythoff array is "central" among Stolarsky interspersions. 

Dual of the Wythoff Array: Sx = 1 and Si = 0 for all / > 2, and 
{[ice]+7 if 7 is of the form [ka] + k + l, 
Hia]+7-1 otherwise. 

Stolarsky Array (Table 1): ut =\{i-^a\ + i. No convenient formula for Si has been found; 
the sequence begins like this: 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1. 

EFC Array (Table 3): 8t = 1, S2k = 1, S2k+l = 0 for all k > 1, and 

[2[̂ f-] + /' if 7 is even, 

12[121 oc J 4- 7 +1 otherwise, 
by Theorem 4.9. 

ESC Array; Introduced here by its classification sequence, {£,.}. = {1,0,1, 0,1, 0,1, 0,1,...}. We 
conjecture that the second column of this array consists solely of even integers, beginning with 2, 
6, 12, 14, 18, 24, 28, 32, 36, 40. Can someone figure out a formula for up. 
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