ADVANCED PROBLEMS AND SOLUTIONS

Edited by
Raymond E. Whitney

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-490 Proposed by A. Stuparu, Vâlcea, Romania

Prove that the equation $S(x)=p$, where p is a given prime number, has just 2^{p-2} solutions, all of them in between p and $p!$. [$S(n)$ is the Smarandache Function: the smallest integer such that $S(n)$! is divisible by n.]

H-491 Proposed by Paul S. Bruckman, Highwood, Illinois

Prove the following identities:

$$
\begin{align*}
& F_{2 n}=2\binom{2 n}{n} \sum_{k=0}^{-1}\binom{n-\frac{1}{2}}{k}\binom{n-\frac{1}{2}}{n-1-k} 5^{k}, \quad n=1,2, \ldots ; \tag{a}\\
& F_{2 n+1}=\binom{2 n}{n}^{-1} \sum_{k=0}^{n}\binom{n-\frac{1}{2}}{k}\binom{n+\frac{1}{2}}{n-k} 5^{k}, \quad n=0,1,2, \ldots \tag{b}
\end{align*}
$$

H-492 Proposed by H.-J. Seiffert, Berlin, Germany

Define the Fibonacci polynomials by $F_{0}(x)=0, F_{1}(x)=1, F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x)$, for $n \geq 2$. Show that, for all complex numbers x and y and all nonnegative integers n,

$$
\begin{equation*}
\sum_{k=0}^{[n / 2]}\binom{n}{k} F_{n-2 k}(x) F_{n-2 k}(y)=z^{n-1} F_{n}(x y / z), \tag{1}
\end{equation*}
$$

where $z=\left(x^{2}+y^{2}+4\right)^{1 / 2}$. [] denotes the greatest integer function.
As special cases of (1), obtain the following identities:

$$
\begin{gather*}
\sum_{k=0}^{[n / 2]}\binom{n}{k} F_{n-2 k}^{2}=\left(3^{n}-(-2)^{n}\right) / 5 \tag{2}\\
\sum_{k=0}^{n}\binom{2 n+1}{n-k} F_{2 k+1}=5^{n} \tag{3}
\end{gather*}
$$

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{2 n}{n-k} F_{2 k} F_{4 k}=5^{n-1}\left(4^{n}-1\right) \tag{4}\\
\sum_{k=0}^{n}\binom{2 n+1}{n-k} F_{2 k+1} L_{4 k+2}=5^{n}\left(2^{2 n+1}+1\right), \tag{5}\\
\sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n}{k} F_{2 n-4 k} P_{n-2 k}=F_{n}(6), \tag{6}
\end{gather*}
$$

where $P_{j}=F_{j}(2)$ is the $j^{\text {th }}$ Pell number,

$$
\begin{equation*}
\sum_{\substack{k=0 \\(5, n-2 k)=1}}^{[n / 2]}(-1)^{[(n-2 k+2) / 5]}\binom{n}{k}=F_{n} . \tag{7}
\end{equation*}
$$

The latter equation is the one given in $\mathrm{H}-444$.

SOLUTIONS

Sum Problem

H-477 Proposed by Paul S. Bruckman, Edmonds, Washington

 (Vol. 31, no. 2, May 1993)Let

$$
\begin{equation*}
F_{r}(x)=z^{r}-\sum_{k=0}^{r-1} a_{k} z^{r-1-k}, \tag{1}
\end{equation*}
$$

where $r \geq 1$, and the a_{k} 's are integers.
Suppose F_{r} has distinct zeros $\theta_{k}, k=1,2, \ldots, r$, and let

$$
\begin{equation*}
V_{n}=\sum_{k=1}^{r} \theta_{k}^{n}, \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Prove that, for all primes p,

$$
\begin{equation*}
V_{p} \equiv a_{0}(\bmod p) . \tag{3}
\end{equation*}
$$

Solution by H.-J. Seiffert, Berlin, Germany

From (1), it follows that

$$
\begin{equation*}
(-1)^{k} a_{k}=(-1)^{k} a_{k}\left(\theta_{1}, \ldots, \theta_{r}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k+1} \leq r} \theta_{i_{1}} \ldots \theta_{i_{k+1}} \tag{4}
\end{equation*}
$$

for $k=0, \ldots, r-1$, is the $(k+1)^{\text {th }}$ elementary symmetric polynomial. Let S_{r} denote the set of all permutations of $\{1, \ldots, r\}$. For the r-tuple (j_{1}, \ldots, j_{r}), where $0 \leq j_{1} \leq \cdots \leq j_{r}<p$ and $j_{1}+\cdots+j_{r}=$ p, we define an equivalence relation on S_{r} by $\pi \sim \sigma$ if and only if $\left(j_{\pi(1)}, \ldots, j_{\pi(r)}\right)=\left(j_{\sigma(1)}, \ldots, j_{\sigma(r)}\right)$. Let A_{1}, \ldots, A_{m} denote the equivalence classes with respect to this equivalence relation. For each $n \in\{1, \ldots, m\}$, we choose a permutation $\pi_{n} \in A_{n}$. Then the polynomial

$$
P_{j_{1}, \ldots, j_{r}}\left(\theta_{1}, \ldots, \theta_{r}\right)=\sum_{n=1}^{m} \theta_{1}^{j_{n}(1)} \cdots \theta_{r}^{j_{\pi_{n}(r)}}
$$

is symmetric. By the fundamental theorem on symmetric polynomials (see A. I. Kostrikin, Introduction to Algrbra [Springer-Verlag, 1982], pp. 281-84), there exists a polynomial $Q_{j_{1}, \ldots, j_{r}}$, having integer coefficients such that [see (4)]

$$
\begin{equation*}
P_{j_{1}, \ldots, j_{r}}\left(\theta_{1}, \ldots, \theta_{r}\right)=Q_{j_{1}, \ldots, j_{r}}\left(a_{0}, \ldots, a_{r-1}\right) \tag{5}
\end{equation*}
$$

The multinomial theorem gives

$$
\left(\sum_{k=1}^{r} \theta_{k}\right)^{p}=\sum_{k=1}^{r} \theta_{k}^{p}+\sum_{\substack{0 \leq j_{1}, \ldots, j_{j}<p \\ j_{1}+\ldots+j_{r}=p}}\binom{p}{j_{1}, \ldots, j_{r}} \theta_{1}^{j_{1}} \cdots \theta_{r}^{j_{r}},
$$

or, in view of (2) and after a little sorting,

$$
\begin{equation*}
a_{0}^{p}=V_{p}+\sum_{\substack{0 \leq j_{1} \leq \cdots \leq j_{r}<p \\ j_{1}+\ldots+j_{r}=p}}\binom{p}{j_{1}, \ldots, j_{r}} P_{j_{1}, \ldots, j_{r}}\left(\theta_{1}, \ldots, \theta_{r}\right) . \tag{6}
\end{equation*}
$$

Equations (5) and (6) show that V_{p} is indeed an integer. It is well known that

$$
\begin{equation*}
\binom{p}{j_{1}, \ldots, j_{r}} \equiv 0(\bmod p) \tag{7}
\end{equation*}
$$

for all primes p and r-tuples $\left(j_{1}, \ldots, j_{r}\right)$ with $0 \leq j_{1}, \ldots, j_{r}<p$ and $j_{1}+\cdots+j_{r}=p$. (5), (6), and (7) imply $V_{p} \equiv a_{0}^{p}(\bmod p)$. Using Fermat's little theorem, we obtain $V_{p} \equiv a_{0}(\bmod p)$, the desired result. Finally, we note that the result remains true, if the zeros $\theta_{1}, \ldots, \theta_{r}$ of F_{r} are not distinct. In such cases, each zero of F_{r} must occur in the defini-tion of V_{n} respecting its multiplicity.

Comment on H-477: Using the result of H-477 (including my final remark), it is very easy to solve the following problem (O. Šuch, Problem 10268, Amer. Math. Monthly 99.10 [1992]:958).

Define a sequence $\left(V_{n}\right)$ by

$$
V_{0}=3, V_{1}=0, V_{2}=2, V_{n+3}=V_{n+1}+V_{n} \text {, for all } n \geq 0 \text {. }
$$

If p is a prime, show that $p \mid V_{p}$.
According to the result of $\mathrm{H}-477$, we only have to show that

$$
\begin{equation*}
V_{n}=\theta_{1}^{n}+\theta_{2}^{n}+\theta_{3}^{n}, n \in N_{0}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z-\theta_{1}\right)\left(z-\theta_{2}\right)\left(z-\theta_{3}\right)=z^{3}-z-1 \tag{9}
\end{equation*}
$$

To do so, it suffices to show that (8) holds for $n=0,1,2$. For $n=0,(8)$ is true, since $V_{0}=3$. For $n=1$, it follows from (9) and $V_{1}=0$. From (9), we get $\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1}=-1$. Hence,

$$
0=V_{1}^{2}=\left(\theta_{1}+\theta_{2}+\theta_{3}\right)^{2}=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{3}+2\left(\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1}\right)=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}-2
$$

implies $V_{2}=2=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}$.

Also solved by A. G. Dresel, F. J. Flanigan, L. Somer, L. Van Hamme, and the proposer.

String Along

H-478 Proposed by Gino Taddei, Rome, Italy
 (Vol. 31, no. 3, August 1993)

Consider a string constituted by h labeled cells $c_{1}, c_{2}, \ldots, c_{h}$. Fill these cells with the natural numbers $1,2, \ldots, h$ according to the following rule: 1 in $c_{1}, 2$ in $c_{2}, 3$ in $c_{4}, 4$ in $c_{7}, 5$ in c_{11}, and so on. Obviously, whenever the subscript j of c_{j} exceeds h, it must be considered as reduced modulo h. In other words, the integer $n(1 \leq n \leq h)$ enters the cell $c_{j(n, h)}$, where

$$
j(n, h)=\left\langle\frac{n^{2}-n+2}{2}\right\rangle_{h},
$$

and the symbol $\langle a\rangle_{b}$ denotes a if $a \leq b$, and the remainder of a divided by b if $a>b$.
Determine the set of all values of h for which, at the end of the procedure, each cell has been entered by exactly one number.

Solution by Paul S. Bruckman, Highwood, Illinois

Let $U(h)=\bigcup_{n=1}^{h}\{j(n, h)\}$ and $V(h)=\{1,2, \ldots, h\}$. We seek to characterize the set

$$
S=\left\{h \in Z^{+}: U(h)=V(h)\right\} .
$$

Clearly, $1 \in S, 2 \in S$.
First, we show that, if $h \in S, h>1$, then h must be even. Suppose $h>1$ is odd. Clearly, $j(1, h)=1$ for all h. Also, $j(h, h)=\left\langle h \cdot \frac{1}{2}(h-1)+1\right\rangle_{h}=1$, since $\frac{1}{2}(h-1)$ is an integer. Since $h>1$, c_{1} and c_{h} are distinct cells; however, they are both occupied by the number 1 , which shows that $h \notin S$ if h is odd and $h>1$.

Suppose $h \equiv 2^{r}\left(\bmod 2^{2 r+1}\right), r=0,1,2, \ldots$ Then

$$
j\left(h \cdot 2^{-r}, h\right)=\left\langle\frac{h}{2^{r+1}}\left(\frac{h}{2^{r}}-1\right)+1\right\rangle_{h}=\left\langle h \cdot\left(\frac{h-2^{r}}{2^{r+1}}\right)+1\right\rangle_{h}=1 .
$$

Also, $j(1, h)=1$. The only way for cells c_{1} and $c_{h \cdot 2^{-r}}$ to be identical is for $h=2^{r}$; otherwise, $h \notin S$. In other words, all elements of S must be powers of 2 .

Define the ordered h-tuple $W(h)=(j(1, h), j(2, h), \ldots, j(h, h))=(1,2,4, \ldots)$, which orders the elements of $U(h)$ according to the cell numbers. We first show that, for all h,

$$
\begin{align*}
& W(2 h) \equiv\left(W(h), W^{*}(h)\right)(\bmod h) \text { where } W^{*}(h) \text { denotes } \\
& \text { the transpose of } W(h)[W(h) \text { in reversed order }] . \tag{1}
\end{align*}
$$

Proof of (1): We first observe that, if $1 \leq n \leq h$,

$$
\begin{equation*}
j(n, 2 h) \equiv j(n, h)(\bmod h) . \tag{2}
\end{equation*}
$$

Also, $\quad j(2 h+1-n, 2 h)=\left\langle\frac{1}{2}(2 h+1-n)(2 h-n)+1\right\rangle_{2 h}=\left\langle 2 h^{2}-2 n h+h+\frac{1}{2}\left(n^{2}-n\right)+1\right\rangle_{2 h}=\left\langle h+\frac{1}{2}\left(n^{2}-n\right)+1\right\rangle_{2 h} \equiv$ $\left\langle\frac{1}{2}\left(n^{2}-n\right)+1+h\right\rangle_{2 h} \equiv\left\langle\frac{1}{2}\left(n^{2}-n\right)+1\right\rangle_{h}(\bmod h)$, or

$$
\begin{equation*}
j(2 h+1-n, 2 h) \equiv j(n, h)(\bmod h), 1 \leq n \leq h . \tag{3}
\end{equation*}
$$

We see that (1) is a consequence of (2) and (3).

Suppose now that $h=2^{r}, r \geq 2$. Then $j(n+h, 2 h)=\left\langle\frac{1}{2}(n+h)(n+h-1)+1\right\rangle_{2 h}=\left\langle\frac{1}{2}\left(n^{2}-n\right)+\right.$ $\left.\frac{1}{2} h(2 n-1)+\frac{1}{2} h^{2}+1\right\rangle_{2 h}=\left\langle\frac{1}{2}\left(n^{2}-n\right)+1+\frac{1}{2}\left(h^{2}-h\right)+n h\right\rangle_{2 h}$. If n is even, then $\frac{1}{2}\left(h^{2}-h\right)+n h \equiv$ $\frac{1}{2}\left(h^{2}-h\right) \equiv 2^{r-1}\left(2^{r}-1\right)\left(\bmod 2^{r+1}\right) \equiv-2^{r-1} \equiv-\frac{1}{2} h(\bmod 2 h)$; if n is odd, then $\frac{1}{2}\left(h^{2}-h\right)+n h \equiv$ $\frac{1}{2}\left(h^{2}+h\right) \equiv 2^{r-1}\left(2^{r}+1\right)\left(\bmod 2^{r+1}\right) \equiv 2^{r-1} \equiv \frac{1}{2} h(\bmod 2 h)$. In either case, we see that, if $h=2^{r}$, $r \geq 2$, then $j(n, 2 h)=j(n+h, 2 h)+\frac{1}{2} h(-1)^{n}$, so

$$
\begin{equation*}
j(n, 2 h) \neq j(n+h, 2 h), 1 \leq n \leq h . \tag{4}
\end{equation*}
$$

We may now complete the proof of the desired result, namely,

$$
\begin{equation*}
S=\left\{1,2,2^{2}, 2^{3}, \ldots\right\}=\text { the set of all nonnegative powers of } 2 \tag{5}
\end{equation*}
$$

Our proof is by induction (on r). We suppose $h=2^{r}, r \geq 0$, and $h \in S$. (Indeed, we already know that $1 \in S, 2 \in S)$. Then the elements of $W(h)$ are distinct $(\bmod h)$ and, a fortiori, $(\bmod 2 h)$. Also, (1) holds. Therefore, the first (and also the last) h elements of $W(2 h)$ are distinct. Moreover, it follows from (4) that the elements of the first half of $W(2 h)$ are distinct from the elements of the second half of $W(2 h)$. We conclude that $2 h \in S$ as a consequence of $h \in S$. Since $W(4)=$ $\{1,2,4,3\}$, thus $4 \in S$. Then, by induction, (5) is established.
Also solved by P. G. Anderson, M. Barile, P. Filipponi, J. Hendel, N. Jensen, and A. N. 't Woord.

Close Ranks

H-479 Proposed by Richard André-Jeannin, Longwy, France
 (Vol. 31, no. 3, August 1993)

Let $\left\{V_{n}\right\}$ be the sequence defined by $V_{0}=2, V_{1}=P$, and $V_{n}=P V_{n-1}=Q V_{n-2}$ for $n \geq 2$, where P and Q are real or complex parameters. Find a closed form for the sum

$$
\sum_{k=1}^{n}\binom{2 n-k-1}{n-1} P^{k} Q^{n-k} V_{k}
$$

Solution by Paul S. Bruckman, Everett, Washington

Let

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n}\binom{2 n-k-1}{n-1} P^{k} Q^{n-k} V_{k}, n=1,2, \ldots \tag{1}
\end{equation*}
$$

Replacing k by $n-k$ yields

$$
\begin{equation*}
S_{n}=\sum_{k=0}^{n-1}\binom{n-1+k}{n-1} P^{n-k} Q^{k} V_{n-k} \tag{2}
\end{equation*}
$$

We seek to prove the following:

$$
\begin{equation*}
S_{n}=P^{2 n}, n=1,2, \ldots \tag{3}
\end{equation*}
$$

Toward this end, let

$$
\begin{equation*}
D_{n}=S_{n+1}-P^{2} S_{n}, n=1,2, \ldots . \tag{4}
\end{equation*}
$$

We may proceed to evaluate D_{n} in a straightforward manner, though not without some useful "tricks." Thus:

ADVANCED PROBLEMS AND SOLUTIONS

$$
\begin{aligned}
& D_{n}= \sum_{k=0}^{n}\binom{n+k}{n} P^{n+1-k} Q^{k} V_{n+1-k}-\sum_{k=0}^{n-1}\binom{n-1+k}{n-1} P^{n+2-k} Q^{k} V_{n-k} \\
&= \sum_{k=1}^{n+1}\binom{n+k-1}{n} P^{n+2-k} Q^{k-1} V_{n+2-k}-\sum_{k=0}^{n-1}\binom{n+k-1}{n-1} P^{n+2-k} Q^{k} V_{n-k} \\
&=\binom{2 n}{n} P Q^{n} V_{1}+\binom{2 n-1}{n} P^{2} Q^{n-1} V_{2}-P^{n+2} V_{n} \\
&+\sum_{k=1}^{n-1} P^{n+2-k} Q^{k-1}\left[\binom{n+k-1}{n} V_{n+2-k}-\binom{n+k-1}{n-1} Q V_{n-k}\right] \\
&=\left(\begin{array}{c}
\binom{n-1}{n} P^{2} Q^{n}+\binom{2 n-1}{n} P^{2} Q^{n-1}\left(P^{2}-2 Q\right)-P^{n+2} V_{n} \\
= \\
\quad+\sum_{k=1}^{n-1} P^{n+2-k} Q^{k-1}\left[\binom{n+k-1}{n}\left(P V_{n+1-k}-Q V_{n-k}\right)-\binom{n+k-1}{n-1} Q V_{n-k}\right] \\
\quad-\sum_{k=1}^{n-1}\left[\binom{n+k-1}{n}+\binom{n+k-1}{n-1}\right] P^{n+2-k} Q^{k} V_{n-k} \\
=
\end{array}\right. \\
&=\binom{2 n-1}{n} P^{4} Q^{n-1}-P^{n+2} V_{n}+\sum_{k=0}^{n-2}\binom{n+k}{n} P^{n+2-k} Q^{k} V_{n-k}-\sum_{k=1}^{n-1}\binom{n+k}{n} P^{n+2-k} Q^{k} V_{n-k} \\
&= \sum_{k=0}^{n-1}\binom{n+k}{n} P^{n+2-k} Q^{k} V_{n-k}-\sum_{k=0}^{n-1}\binom{n+k}{n} P^{n+2-k} Q^{k} V_{n-k}=0 .
\end{aligned}
$$

We have tacitly assumed that $n \geq 2$ in the above development; it is a trivial exercise to verify that $S_{1}=P^{2}, S_{2}=P^{4}$. Therefore, by an easy induction, since $D_{n}=0$ for all $n \geq 1$, (3) is established.

Also solved by P. Filipponi, N. Jensen, H.-J. Seiffert, A. Shannon, and the proposer.

$\% \%$

