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1. INTRODUCTION 

We consider polynomials {Un(p9q; x)} such that 

Un(j>,q\ x) = (x + p)Un_l(p9q; x)-qUn_2(p9q; x), n>2 (1) 

with U0(p,q; x) = 0 and Ux(p9q; x) = l. 
The parameters p and q are arbitrary real numbers (with q ^ 0), and we denote by a, J3 the 

numbers such that a + j3 = p and aj3 = q. 
We see by induction that there exists a sequence {c„ k(p, )̂}„>o of numbers such that 

k>0 

:n,kKP,HP'k 

k>0 
Un+l (p, q\ x) = X cn% k (p, q)xk, (2) 

with 
c^k(p9q) = 0ifk>n a n d cn9„(p9q) = l9n^0. 

The first few terms of the sequence {Un(p9 q; x)} are 

\U2(p,q; x) = p + x 

\u3(j>,q; x) = (p2-q) + 2px + x2 

[U4 (p9 q; x) = (p3 - 2pq) + (3p2 - 2q)x + 3px2 + x3. 

Particular cases of Un(p9q; x) are the Fibonacci polynomials Fn(x), the Pell polynomials 
Pn(x) [4], the first Fermat polynomials ®„(x) [5], the Morgan-Voyce polynomials of the second 
kind B„(x) ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind S„(x) given by 

U„(0,-l;x) = F„(x), 
U„(0,-l;2x) = P„(x), 
£/„(0,2;x) = O„(x), 
11^(2,1; x) = B„(x\ 
Un(0,l;2x) = S„(x). 

We have used S„ in place of the customary U„ since U„ has been used in a different way in 
the present paper. For particular values of the variable x, one can obtain some interesting 
sequences of numbers. 

(i) The sequence {U„(p,q; -p)} satisfies the recurrence 

U„ (p, <f,-p) = -qU„_2 (p, q;-p),n>2; 
thus, 

U2n{p, q,-p) = 0 and U2n+l(p, q; - p) = {-qf. 
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By (2), these can also be written 
2«- l 

I(-irA2„-u(/>,<7)=o 
k=o 

and 
In 

I(-0V<4u(p,*) = (-i)V-

(3) 

(4) 
k=0 

(ii) It follows at once that the sequence {U„(p, q; 0)} is the generalized Fibonacci sequence 
defined by 

Un(p,q; 0) = pU„_l(p,q;0)-qUn_2(p,q; 0), 

with U0(p, q; 0) = 0 and Ux(p, q;0) = l. Therefore, 

U„+l(p,q;0)= S a ^ = j 
i+J=n 

n+l nn+l an+l-p 
a if « " A 

a-p 
(n + \)a" i£a = fi. 

By (2), notice that 

cn,»{p,q) = Un+l(j>,q;0)= X « ' ^ -
i+J-n 

(5) 

More generally, our aim is to express the coefficient c„tk(p9 q) as a polynomials in (a, /?) and as 
a polynomial in (p, q). 

2. THE TRIANGLE OF COEFFICIENTS 

One can display the sequence {c„ k(p, q)} in a triangle, thus: 

n 
0 
1 
2 
3 

* 0 

1 

P 
P2~q 
p3-2pq 

1 

0 
1 
2p 
3P2--2q 

2 

0 
0 
1 
3p 

3 

0 
0 
0 
1 

Comparing the coefficients of xk in the two members of (1), we see by (2) that, for n > 2 and 
k>\, 

cn, k (p, q) = c„-i, k-\ 0>> q)+pcn-i, k (p, q) - qcn-i, k (P, q) 
~ Cn-\, k-\ + PCn-\, k + a(cn-l, k ~ PCn-2, k ) 

= Cn-l, k-l + aCn-\, k + Pipn-l, k ~ aCn-\, k X 

(6) 

where, for brevity, we put cnk for cn k(p,q). From this, one can easily obtain another recur-
rence relation. 
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Theorem 1: For every n > 1 and k > 1, we have 

Cn,k ~ fcn-l,k+jLa Ci,k-l 
j=0 

=^..»+iV""i-'c,,»_1 
: : « 

/=o 
Proof: In fact, (7) is clear by direct computation for n < 2 (recall that a + fl = p). Suppos-

ing that the relation is true for n > 2, then we have by (6) that 
C«+l,it = PCn,k + a ( C « ,k ~PCn-\,k) + Cn,k-l 

n-l 

i'=0 

=^,t+I«^,, A r — 1 -

This concludes the proof, and the other formula can be proved in the same way. 

Let us examine some particular cases. 

(i) Fibonacci polynomials. In this case we have p = 0, q = - 1 , and a = -J3 = l. From this, 
(7) becomes 

n-l 
C » , Jk = ~""Cw-l, k + 2 ^ Ci, it—1 

z=0 

=c„_u+i(-ir1-'c,fc_1. 

fii) Morgan-Voyce polynomials of the second kind. In this case, we have p = 2,q = l, and 
a = P = 1. Thus, (7) becomes 

H - l 

c«, it - c «- i , i t + 2J C', k-i •> 
7=0 

which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients 
of Morgan-Voyce polynomials ([1], [3]). 

3. DETERMINATION OF cHtk(p, q) AS A POLYNOMIAL IN (a , fi) 

In our proof we shall need the following lemma. 

Lemma: For every k > 0, we have 
1 =IX/\ (8) (i-pt+gt2)k+i „r0 

with 
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Proof: Recall that 

where r is a real or complex parameter and \rt \ < 1. Thus, we have 
1 1 

(l-pt + qt2)k+l ~ (l-at)k+1(l-fit)k+1 

Z fk+ri\ n.n v ( k + *i\ a**" I k )<** -II k wt 

«>0 
where 

by application of Cauchy's nile for multiplying power series. Q.E.D. 

Theorem 2: For every n > 0 and A > 0, we have 

c„,k(p,C)= Z f \ + 0 (** J V^> (9) 
i+j=n-k ^ ' ^ ' 

where we have used the convention ]£,•+,-=, ̂ z,7 =0, if 5 < 0. 

Proof: For brevity, we put £/„(/?, q; x) = Un(x) and cn k(p, q) = cnJc. Let us define the gen-
erating function of the sequence {Un(x)} by 

f(x,t)^U„+l(x)t". 
n>0 

By (1), we get 

f(x, 0-1 = SC/„+1(xK = Kx + p^UW-1 -qt^U^W2 . 
ri>l «>1 n>l 

The last sum can be written as £„>2 U„_2(x)t"~2, since C/0(X) = 0. It follows from this that 

f(x, t)-l = t(x + p)f(x, t) - qt2f(x, t). 
Thus, 

_1 
l - ( j c + /?)f + gtf 

We deduce from (10) that 
k\tk & 

/(*,*)=. , . . . .2- ( 1 0 ) 

( i - ( x + / ? ) / + # ; <ac „>0 

>?>£: «>0 

since Un+l(x) is a polynomial of degree n. 
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Put x = 0 in the last formula and recall that 

by Taylor's formula, to obtain 

n+k, k j , 

1 = Z<w". (ii) (l-pt + qt2)k+1 £o 

Comparing this formula with (8), we see that 

i+j=nv y v y 

This concludes the proof 

Remarks: (i) If k = 0, then (9) reduces to the classical formula (5). 
(ii) Notice that (11) is the generating function of the km column of the triangle of 

coefficients c„tk. Ifk= 0, we obtain in particular the well-known generating function of the gen-
eralized Fibonacci sequence, namely, 

^—2=TUn+l(p,q;0y. (12) 
l-pt + qt „>0 

(Hi) Using (6), one can obtain, by induction and with a little manipulation, another 
proof of Theorem 2. 

Corollary 1: For every n > 0 and k > 0, we have 

Proof: The result follows immediately from (9) and the fact that (-a) + (-/?) = -p and 
(-a)(-j3) = q. 

4, SOME PARTICULAR CASES 

The general formula (9) can be simplified in two cases: 

(I) Supposing that p2 = 4q, we have a = J5 and (8) becomes 

1 1 Y (n + 2k +1 ] nr n,n 

{\-pt + qty+l (I-at) „>0 

Hence, by (11), cnJc - cn k(p, q) takes the simpler form 

(n + k + f\„-k (n + k + l\,,T.n-k 
c»-k={2k + l ) a =(2k + l)(P,2:> • 

If p = 2 and q = l (Morgan-Voyce polynomials of the second kind), we obtain the known 
relation [8] 
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o / \ <sr(n + k + l\ n 

yt=0V y 

(ii) Supposing that p = 0,we have a = -J3 and (8) becomes 

1
 =

 1
 = V (-\\»(n + * 1 / | V " 

(l-pt + qt ) (l + qt ) „>0 V * J 

Thus, by (11), 
C2«+fc 

This can be written 

.* = ( - l ) " ( W J * y a n d c 2 n + , + u = 0 fo r»>0and^>0 . 

Hence, 
Cr,,n-2k = (-Vk(^~k

ky, forn-2k>0 and ^ ^ ^ = 0, for H - 2 £ - 1 > 0. 

Now, by (2), 
n n [nil] 

U„+1(0,q; x) = Zc„,k(0,q)xk = Zc„!n_k(0,q)x"-k = Zc„,„_2k(0,q)x"-2k. 
k=0 k=Q k=0 

Thus, we get the simplified formula 
[nil] 

UnAQ,q-,x)=Y(-mnlk)qkx"-2k- 03) 
k=0 

If p = 0 and q = - 1 , we obtain the known decomposition of Fibonacci polynomials 
[«/2]/ 

fc=QV ' 

and if j? = 0 and q = l, we have the similar expression of Chebyschev polynomials of the second 
kind 

[nil] [n/2\ f _Jr\ 
Sn+l(x) = U„+l(0,l; 2x)= Z ( - l ) T ^ (2*) 

5. DETERMINATION OF cntk(p9 q) AS A POLYNOMIAL IN (/>, f) 

Theorem 3: For every w > 0 and k > 0, we have 

jRroo/; It is clear that Un+1(p, q; x) = Un+l(0,q; x + p). Thus, 

c„.k(P,q)- ^ - ^ • 
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By (13), one can express the last member as 
[n/2] 

--TnY{"rtryp-
This completes the proof of Theorem 3. 

If k = 0, we get the formula known by Lucas ([7], p. 207), namely, 
[nil] f N 

Un+1(p,q; 0)= X ( - l ) f / V ^ r . (15) 

6, RISING DIAGONAL FUNCTIONS 

Let us define the rising diagonal functions {¥„(/?,#; x)} of the sequence {c„tk(p,q)}—see 
the table—by *P0(p, g; x) - 0 and 

n [nil] 

X+l(P>^ X) = lLCn-k,k(P^)xk = HCn-k,k(P^)xk, for«>0. ( 1 6 ) 
k=0 fc=0 

Notice that, from the table, 

^ i (A0; x) = l> ^ ( A ? ; *) = />, and %{p,q\ x) = p2-q + x. (17) 

Theorem 4: For every « > 2, we have 

¥„(/>,?; *) = ̂ - i ( ^ ; * )+ (* -<7 )^2 fo* ; *)• (18> 

/ * w / ; For brevity, we put %(p, q; x) = ¥„(*) and c^Q?, ?) = c ^ . By (17), the state-
ment holds for n = 2 and w = 3. Supposing that (18) is true for n > 3, then we get, by (16), 

[n/2] 
k 

^n+l\X) ~Cn,Q + LaCn-k,kX 

k=l 

Recall from (5) that cn^ 0 = Un+l (0) = pcn_h 0 - gc„_2? 0, and notice that n-k>n-[nl2]>2, since 
n > 3. By these remarks and (6), one can write 

[»/2] 

^W+l (*) = F«-l, 0 - 9̂ -2,0 + Z (C*-l-k, k-l + /*„-!-*, £ ~ Wn-2-k, k )X 

k=l 

[n/2] [n/2] [n/2]-l 
: PlLCn-l-k,kxk'-^jLCn-2-k,kxk'+X E Cn-2-k,kxh ~k 

Ln-2-k,kJ 

k=0 k=0 k=0 

= p%¥n(x) + (x~q)Wn_l(xl since[/i/2]-l = [(w-2)/2]. 

This concludes the proof. 

1994] 451 



A NOTE ON A GENERAL CLASS OF POLYNOMIALS 

Corollary 2: For every n > 0, we have 

%+1(p,i; *)= un;r)pn-2r(x-qy. (19) 

Proof: By Theorem 4, and since ^(x) = 0, ^ ( x ) — 1, it is clear that 

%(p,q,x) = Un(p,q-x;0), 
and the result follows by (15). 

Let us examine some particular cases. 

(i) Putx = q'm (19) to get, by (16), 
[H/2] 

X ? Cn-k,k(P,q) = P"-

If p = l and ̂  = 1, we get a known identity on the coefficients of the Morgan-Voyce polynomial 
of the second kind Bn, first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely, 

[nil] 

£ W ( 2 , 1 ) = 2". 
fc=0 

(ii) Put x = 1 in (19) to get, by (16), 
[w/2] nil] \nl2\ N 

fc=0 r=(A ' 

which is more general than the above result. 

(in) Ifp = 0, then Corollary 2 implies by (16) that 

fc=G 

If g = 1 (Chebyschev polynomials of the second kind), or q = 2 (first Fermat polynomials), this 
identity was first noticed by Horadam [5] with slightly different notations. 

by 

7. THE ORTHOGONALITY OF THE SEQUENCE {U„(p, q; x)} 

In this paragraph we shall suppose that q > 0. Consider the sequence {R„{p, q; x)} defined 

Rn(p,q;x) = q^l)l2Sn 
'x + p* (20) 

where Sn(x) is the nth Chebyschev polynomial of the second kind. Let us determine the recur-
rence satisfied by the sequence {R„(p, q; x)}. One can write 

RTI(p,q;x) = q^'2 
rx + p^ 

^ 1 - 1 
x + p 

Iq) n\^q -s. n-2 

rx + p^ 
ijq 
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:(X+P)1WSJ 
1 x + p x 

-«™Mi5f \2^j 

= (x + p)R71_l(p,q; x)-qRr7_2(p,q; x). 

Observe that the sequence {R„(p, q\ x)} satisfies the recurrence (1) with J%(p, q; x) = 0 and 
Rx(p,q; x) = l, so that 

Xn(p,r,x) = un(p,r,xy (21) 
Recalling that the sequence {$„(x)} is orthogonal over [-1,1] with respect to the weight 

V I - x 2 , we deduce that the sequence {Un(p,q; x)} is orthogonal over [-p-2yfq,-p + 2y[q] 
with respect to the weight w(x) = ij-x2 - 2px- A, where A = p2 - Aq. 

In fact, for n & m, we have 

rp+2^ ! fP+^49 

j_7; m w # = q ^ - ^ Sn 
f \ 

x + p J-p-2jj p-^sfq 

x + p 
v2Vfyrm(v2^r 

w(x)dx 

4q(n+m)/2flSn(a))Sm(co)^l-a)2 dco = 0, 

where co = -^£. In the case of the Morgan-Voyce polynomial of the second kind, B„(x), this 
2yjq 

orthogonality result was first given by Swamy [8]. 
lfa) = cost (0<t< 7u), it is well known that Sn(co) = ̂ f-, Thus, by (20) and (21), we have 

sin/ 

From this, we see that the roots of U„(p, q; x) are given by 

xk = -p + 2^q cos{k7TI'«), k = 1, . . . ,(w-l). 

For instance, the roots of the Morgan-Voyce polynomial of the second kind, Bn(x) = 
1/^(2,1; x), are (see [9]) 

x , = - 2 + 2cos f -^ r l = - 4 s i n 2 f T ^ - \ * = l, . . . ,(/i-l). 
n + l 2n + 2 

Under the hypothesis q> 0, we deduce from the general expression for xk that the general-
ized Fibonacci sequences Un(p, q; 0) vanish if and only if there exists an integer k (1 < k < n-1) 
such that cos(£;r lri)-pl 2^fq. 

8. CONCLUDING REMARK 

In a future paper, we shall investigate the sequence {Vn(p, q; x)} of polynomials, defined by 

Vn{p,q\ x) = {x + p)Vn_l(p,q- x)-qVn_2(p,q; x), n>2, 

with V0(p, q; x) = 2 and Vx(p, q; x) = x + p. 
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