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1. INTRODUCTION
We consider polynomials {U,(p, ¢; x)} such that

U,(p,q, x)=(x+p)U,(p,q; x)—qU,,(p,q; x), n22 )]
with Uy (p, ¢; x)=0and U,(p, q; x)=1.

The parameters p and g are arbitrary real numbers (with g # 0), and we denote by «, f the
numbers such that ¢+ f=p and ¢ff=¢q.

We see by induction that there exists a sequence {c, ; (P, ¢)}>o of numbers such that
k20 :

Un+1(p: q, JC): ch,k(p’q)xk: (2)

k=0
with
¢, (p,q)=0ifk>n and ¢, ,(p,q9)=1, n20.

The first few terms of the sequence {U,(p, q; x)} are
Uy(p,q; x)=p+x
Us(p, q; x)=(p* —q)+2px +x*
U,(p,q; x)= (P’ -2pq)+(Bp* - 2q)x +3px* +x°.
Particular cases of U,(p, q; x) are the Fibonacci polynomials F,(x), the Pell polynomials

P,(x) [4], the first Fermat polynomials ®,(x) [5], the Morgan—Voyce polynomials of the second
kind B,(x) ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind S, (x) given by

U,(0,-1 x) = F,(x),
U,(0,-1; 2x) = F,(x),
U,(0,2; x)=®,(x),
U,n(2,1, x) = B, (%),
U,0,1 2x) =S, (x).
We have used S, in place of the customary U, since U, has been used in a different way in

the present paper. For particular values of the variable x, one can obtain some interesting
sequences of numbers.

(i) The sequence {U,(p,q; — p)} satisfies the recurrence

U,(p,q, -p)=—9U,,(p,q;, —p), n=2,
thus,

Uy(p,q; —p)=0 and U,,,(p,q; -p)=(-9)".
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By (2), these can also be written

2n-1
Z(_l)kkaZn—l,k(p: q) =0 (3)
k=0
and
2n
> (D Py (P, 9)=(-1)"q". @)
k=0

(ii) It follows at once that the sequence {U,(p, q; 0)} is the generalized Fibonacci sequence
defined by
U,(p,q; 0)=pU, (P, 4; 0)-qU,,(p, ¢; 0),

with U, (p, q; 0)=0and U,(p, q; 0)=1. Therefore,

n+l _ n+l1
P taep,
Uni(p,q; 0)= 2, @'/ =3 a=p
S (n+)a" if a=p.

By (2), notice that
602D =Upa(p, 4 0)= 20 5)

i+j=n
More generally, our aim is to express the coefficient ¢, ,(p, g) as a polynomials in (a, B) and as
a polynomial in (p, q).
2. THE TRIANGLE OF COEFFICIENTS

One can display the sequence {c, ,(p,q)} in a triangle, thus:

k| O 1 2 3
n
0 1 0 0 0
1 p 1 0 0
2 P’ —q 2p 0
3 p3—2pq 3p2—2q 3p 1

Comparing the coefficients of x* in the two members of (1), we see by (2) that, for »>2 and
k=1,
Ca k(D D) = Cp k1 (P, D + PC 1 (P, D) — 9C12,1 (P, 9)

= Cpy gt Py k T A(Cpor k. — PCron k) (6)
=C -1 T, +,3(Cn—1, kT acn—l,k),

where, for brevity, we put ¢, , for ¢, ,(p,q). From this, one can easily obtain another recur-
rence relation.
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Theorem 1: For every n=1and k > 1, we have

n—1
—1-i
Co ke = Plrr i +Za" 'C; k1
=0
@)

n-1
—1—i
=QC, 1k +Z,Bn 'C; r1-
i=0

Proof: 1In fact, (7) is clear by direct computation for n <2 (recall that « + 8= p). Suppos-
ing that the relation is true for n > 2, then we have by (6) that

Corr e =P +(C 1 = BCuy 1) +Cy i

n-1

_ n—1-i

=fc, i +aZa Cik-1TCn k-1
i=0

n
=pc,  + Z a™'c; g
i=0

This concludes the proof, and the other formula can be proved in the same way.
Let us examine some particular cases.

(i) Fibonacci polynomials. In this case we have p=0,g=-1,and a =—f =1. From this,
(7) becomes

n-1

Cok = Cpii t Zci,k—l
i=0

n-1
—1—i
=Cpr T Z(‘l)n "¢ pt-
i=0

(i) Morgan—Voyce polynomials of the second kind. In this case, we have p=2,9=1, and
a = f=1. Thus, (7) becomes

n—1
cn, k= Cn—l, k + Z ci, k-1>
i=0
which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients
of Morgan—Voyce polynomials ([1], [3]).

3. DETERMINATION OF ¢, ,(p,q) AS APOLYNOMIAL IN (a, )
In our proof we shall need the following lemma.

Lemma: For every k >0, we have

1
- = d tn’ 8
(1- pt +qt*)*! Zo ek ®)

b 5 (o

i+j=n

with
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Proof: Recall that
1 k+n\ nn
0.00=——z=3 (1",

(1 —rt ) n20
where 7 is a real or complex parameter and |r¢|<1. Thus, we have
1 1

(l_pt+qt2)k+1 = (l_at)k+l(1_ﬂt)k+l

-y (e 2 (k5

n20 n20

= Zdn,k’",

n20

e S ().

i+j=n

where

by application of Cauchy's rule for multiplying power series. Q.E.D.

Theorem 2: For every n>0 and k£ >0, we have
k+i\(k+j)\ ips
aue.= T ()(F1 ), ©)
i+j=n-k

where we have used the convention X, ;_;a; ; =0, if s<0.

Proof: For brevity, we put U, (p, q; x) =U,(x) and c, ,(p,q) =c, ;. Let us define the gen-
erating function of the sequence {U,(x)} by

F60= YU,

By (1), we get
FO,0)=1=Y U, ()" =t(x+p)Y U, ()" —qt* Y U, (x)e".

n21 n21 n21

The last sum can be written as ¥, U,_, (x)t""2, since U, (x) = 0. Tt follows from this that

fGe,0)=1=t(x+p)f(x, )~ qt* £ (x,1).

Thus,
1
)= . 10
AL 1—-(x+p)t+qt2 (10)
We deduce from (10) that
kit o
= x, )= > UL (x)"
(1~(x+p)t+qt2)k+1 é’xk f( ) ,,zz:‘) n+1( )
= Y U = Y UL (™,
n2k n20

since U, ,,(x) is a polynomial of degree n.
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Put x =0 in the last formula and recall that

U890
n+k, k k’ H
by Taylor's formula, to obtain
1 n
o = 2 Gkl (11)

(A-pt+g) 5
Comparing this formula with (8), we see that
k+i\(k+J) ipj
Cprteste = n i = 2 ( k l)( k])a B’
i+j=n
This concludes the proof.

Remarks: (i) If k=0, then (9) reduces to the classical formula (5).

(ii) Notice that (11) is the generating function of the k™ column of the triangle of
coefficients ¢, ,. If k= 0, we obtain in particular the well-known generating function of the gen-
eralized Fibonacci sequence, namely,

1
=Y U,.(p,q; O 12
s ZO (P, 0) (12)

(iij) Using (6), one can obtain, by induction and with a little manipulation, another
proof of Theorem 2.

Corollary 1: For every n>0 and k£ >0, we have
k(P @) =(-D""¢, (P, 9).
Proof: The result follows immediately from (9) and the fact that (—a)+(-f)=-p and
Ca-p=q.
4., SOME PARTICULAR CASES

The general formula (9) can be simplified in two cases:

(i) Supposing that p? = 4q, we have a = 8 and (8) becomes

1 _ 1 _ n+2k+1\ _n.n
(l_pt+qt2)k+l - (l_at)2k+2 _E( 2k +1 )a .

Hence, by (11), ¢, , = ¢, ,(p, q) takes the simpler form

_(n+k+1) ok _(n+k+1 n—k
c",k‘( 2k+1 )a _( 2k+1 )(p/2) :
If p=2 and g =1 (Morgan—Voyce polynomials of the second kind), we obtain the known
relation [8]
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n+k+1\_»
5= (")
(i) Supposing that p =0, we have a = —f and (8) becomes
1 1 n[n+kY n,an
(l_pt+qt2)k+l = (l+qt2)k+1 = Z(_l) ( k )q .

n20

Thus, by (11),
Comkk = (—l)"(n;k)q” and Cp,4414 =0 forn>0and £k >0.

This can be written
Cok4n,n = (‘Dk(k Zn) g" and Copansrn = 0.
Hence,
Cpnak = (—l)k(n;k)q", forn-2k>0 and c,, 5, =0, for n-2k-120.

Now, by (2), -

n+l(0 q, x) ch k(O q)x - Z ,n—k (0 q)x ch n-2k (O q)x"—2k
k=0

Thus, we get the simplified formula

[n/2]
Ur(©.5 9= 3¢ 1)( Faaae 13)

If p =0 and g = -1, we obtain the known decomposition of Fibonacci polynomials

Fa(x)= ["2/31( ) n_Zk

and if p =0 and g =1, we have the similar expression of Chebyschev polynomials of the second
kind

[n/2]
n+l(x) Un+1(01 Z)C) Z( 1) ( k)(zx)n—Zk.

5. DETERMINATION OF ¢, ,(p, q) AS A POLYNOMIAL IN (p, q)

Theorem 3: For every n>0 and k >0, we have

¢ o(P,q) = [("_Zk)/z] (_l)r(n - r)(n ';Czr)qrpn—Zr—k. (14)

r=0

Proof: 1tis clearthat U,,,(p,q; x)=U,,,(0,q; x+ p). Thus,

Ui(p,4; 0) _ U (0,4, p)
k! kL

Cn,k(p’ q)
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By (13), one can express the last member as

[gl(—l)’(n - r) n-2r)---(n-2r-k+1) gk
r=0

r k!
[(n=k)/2]
r e _2 r_ n—4ir—
NG g (e
r=0

This completes the proof of Theorem 3.
If k& = 0, we get the formula known by Lucas ([7], p. 207), namely,

[7/2] 3 Y
Ura®. 3 0= L0 (" )ap ™ (15)

=0

6. RISING DIAGONAL FUNCTIONS

Let us define the rising diagonal functions {¥,(p, q; x)} of the sequence {c, ,(p, g)}—see
the table—by ¥, (p, q; x) =0 and

n [n/2]
Y0, @ )= Cpe (P, DX = Y 0,y 1 (0, )X, forn>0. (16)
k=0 k=0
Notice that, from the table,
Y(p,q; x)=1, Y,(p,q; x)=p, and ¥(p,q; x)=p* —q+x. an
Theorem 4: For every n>2, we have
¥, (p.q; ©)=p¥, (D, q; )+ (x-¥,,(P,q; x). (18)

Proof: For brevity, we put ¥, (p,q; x)="¥,(x) and c, ,(p,q)=¢,,. By (17), the state-
ment holds for n=2 and n=3. Supposing that (18) is true for 7 > 3, then we get, by (16),

[n/2] '
W ()= €0+ D Cpp X -
k=1
Recall from (5) that ¢, o = U,,1(0) = pc,_; ¢ —gC,-2,9, and notice that n—k >n—[n/2] 22, since
n>3. By these remarks and (6), one can write

[n/2]

k
Woa(x¥)=pc,1 0= 94Cna,0+ Z (Cootote, k=1 T PCpotop ke — GCpri, k)X
k=1

[n/2] [n/2] {n/2}-1

_ k k k
= PZC -k, k%X 4 ZC -k k¥ TX Z Cp2-k, k%
k=0 k=0 k=0

=p¥,(x)+(x-q)¥,_,(x), since [n/2]-1=[(n-2)/2].

This concludes the proof.
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Corollary 2: For every n20, we have
[n/2]

Pt (0, G %)= ), (";r)p"“”(x -q). (19)

r=0
Proof: By Theorem 4, and since ¥, (x) =0, ¥,(x) =1, it is clear that
¥,(p,q; ¥)=U,(p,q-x; 0),
and the result follows by (15).
Let us examine some particular cases.
(i) Putx=gqin (19)to get, by (16),

[n/2]

Sdc i p)=p".
k=0

If p=1and g=1, we get a known identity on the coefficients of the Morgan—Voyce polynomial
of the second kind B,, first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely,

[n12]
Y r(2,1)=2".
k=0

(i) Putx=1in (19) to get, by (16),
[n/2] [n/2]

Z Cote (P, 9) = z (n ; r)Pn—zr 1-9q),
k=0 r=0

which is more general than the above result.

(iii) If p =0, then Corollary 2 implies by (16) that
Zc2n—k, 1 0,9)x" =(x-q)".
k=0

If g = 1 (Chebyschev polynomials of the second kind), or g = 2 (first Fermat polynomials), this
identity was first noticed by Horadam [5] with slightly different notations.

7. THE ORTHOGONALITY OF THE SEQUENCE {U,(p, ¢; x)}

In this paragraph we shall suppose that ¢ > 0. Consider the sequence {R, (p, q; x)} defined
by

X+p

g — (n—-l)/ZSn L 20
R,(p,q; ¥)=¢q [2J21') (20

where S, (x) is the n™ Chebyschev polynomial of the second kind. Let us determine the recur-
rence satisfied by the sequence {R,(p, g, x)}. One can write

oy = mD2| [ X P S x+tp|_ X+p
R 0= (2o 5725522

452 [Nov.




ANOTE ON A GENERAL CLASS OF POLYNOMIALS

— (x4 P2 S, x+p n-32g | X +p
(x P) n—1 2-\/— q n-2 2\/’q‘

=(x+pR,_(p.q; X)-qR,_,(p,q; x).

Observe that the sequence {R,(p, q; x)} satisfies the recurrence (1) with R,(p, q; x) =0 and
Ri(p,q; x) =1, so that

R, (p,q; x)=U,(p.q; x). 2D

Recalling that the sequence {S,(x)} is orthogonal over [—1, 1] with respect to the weight

Ji-x* , we deduce that the sequence {U,(p, q; x)} is orthogonal over [- P29, -p+2Jq]
with respect to the weight w(x) =+/—x* —2px— A, where A = p> —4q.

In fact, for n #m, we have

p+2a eyt [PHE (x4 p
B e BT

+1
= 40+ f_lSn(w)Sm(w)\/l —0* do =0,

where @ = _2)22‘ In the case of the Morgan—Voyce polynomial of the second kind, B,(x), this

q
orthogonality result was first given by Swamy [8].
If @ = cost (0<? <), itis well known that S, (w) =22 Thus, by (20) and (21), we have

sint °

in nt
Un(p, q; _p+2w\/5) — q(n—l)/ZSn(a)) — q(rl—l)/z Slfl”; -

Sin
From this, we see that the roots of U, (p, q; x) are given by

X :—p+2ﬁcos(kﬂ/n), k=1..(n-1).

For instance, the roots of the Morgan—Voyce polynomial of the second kind, B,(x)=
Upi(2,1; x), are (see [9])

xk=—2+2cos—]£n4- = —45in? krz , k=1..,(@m-1).
n+l1 2n+2

Under the hypothesis ¢ >0, we deduce from the general expression for x, that the general-
ized Fibonacci sequences U, (p, g; 0) vanish if and only if there exists an integer k (1<k <n-1)

such that cos(kz/n)=p/ 2\/5 )

8. CONCLUDING REMARK

In a future paper, we shall investigate the sequence {V,(p, g; x)} of polynomials, defined by

Va(p, q; )= (x+p)V, (D, 4, X)=qV,, (P, q; %), n22,
with Vy(p, q; x)=2 and V(p, q; x) =x+p.
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