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A few days ago I saw the paper [4]. I think I can make some additional remarks that might 
not be totally useless for the Fibonacci Community! 

Let (an) be a given sequence and sn = S^=0(?J^. Denoting the respective (ordinary) gener-
ating functions by A(x) and S(x), the paper in question mainly deals with the consequences of the 
formula 

Knuth [7] has introduced the binomial transform by 

and it is clear that this is the situation from above. But Philippe Flajolet and the present writer 
agreed about ten years ago that there are just exponential generating functions hidden! They 
have a convolution formula 

and upon choosing the hk's to be equal to 1, we have the old situation. So, denoting the exponen-
tial generating functions by A(x) mdS(x), we have the even simpler formula S(x) = exA(x). 
This can readily be inverted as A(x) = e~xS(x), whence 

These facts about exponential generating functions are of course folklore; one particular reference 
is [3]. 

Flajolet & Richmond [2], Schmid [8], and Kirschenhofer & Prodinger [6] all made heavy use 
of (1). Schmid observed (among other writers) that an exponential generating function will be 
transformed into an ordinary generating function by the Bore I transform. 

Now the generalization 

translates into 
S(x) = ebxA(cx). 

Since 

A(x) = e-ixS[± 
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we find the inversion formula 
n s \ 

\n-k Tji-k 

k=0y 

The discussion in Theorem 2 becomes quite transparent, considering exponential generating 
functions. It is asked whenever we have 

p =y(Atn-kskF 
1 pn+r Z * 4 fc I rqk+r> 

where Fn denote Fibonacci numbers. The exponential generating function of the Fibonacci 
numbers Fn is 

with the usual a - (1 + V5)/2 and j5--\la~{V- v5)/2. More generally, the sequence F n+r 

leads to 

- U a r e ° ^ ~prefiPx) = e* -j=(areaC,sx -pre^sx\ 

from wMch we deduce the two equations, 

ap = t + aqs and J3p=t+fiqs. 

Subtracting them, we see that 

_ap-PP _FP 
aq~pq Fq 

Further, 
ryP _ RP a

q~P - Rq~P F 

aq-pq aq-pp Fq 

To justify this equating of coefficients, we note that the functions e** are linearly independent; 
and the other possibility of grouping terms from the left and the right side would lead to the 
impossible equation ar - - /T . 

In 14] there is also the modification: What are the coefficients of 

That means: What is the effect of deleting the first factor? We can answer this much more gen-
erally by considering (with an arbitrary complex parameter d), 

(l-hxf \l-bxj 
In this derivation, we will use the concept of residues, interesting per se. 

We are using the substitution w = -^ or x = ~^. Therefore, ^-bx = - ^ and dx = 

(c+bw)2 -^—jdw; thus, 
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1 C dx {c + bwf 

cdw (c+bw)"+1 (c + bw)d 

W , , j -A(w) 2mjx"+1 cd y ' 

2m ^(c + bwf wn+l cd A(W) 

Since 

= c1_ V"](c+bw)"^'1 A(w) 

_y(n + d-l]h„-k k 

A(w) = 
Kc+bw) \c+hw j 

we find in a similar way the inversion formula 

a*=c II n-k J(-l) *• h-

The formula (1) is also useful to deal with Knuth's sum [5, eq. (7.6)] 

k=Q 

Since 
.*A~w 

kj 

the generating function of the sequence un turns out to be 
1 1

 =
 l

 = y x2n(2n\A-„ 

From this, we see that un - 2 \nn) ifn is even, and un = 0 otherwise. 
I communicated this idea to Knuth, and he reported that Herbert Wilf came to this (or a 

similar) approach independently. 
Formula (1) also has a combinatorial interpretation. If, for example, A(x) enumerates certain 

words, so that an is the number of words of length n with a certain property, and we perform the 
operation "fill-in a new letter where and as often as you want," then the new "language" has the 
generating function S(x). For further details on such combinatorial constructions, we refer the 
reader to [1]. 
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