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1. INTRODUCTION 

It is well known that every n in the set N of positive integers is uniquely a sum of non-
consecutive Fibonacci numbers. This sum n is known as the Zeckendorf representation ofn. We 
arrange these representations to form the Zeckendorf array Z = Z(i, j) as follows: column j of Z 
is the increasing sequence of all n in whose Zeckendorf representation the least term is Fj+l. The 
first row of Z therefore consists of Fibonacci numbers: 

z(l,l) = l = F2 z(l,2) = 2 = F3 z(l,3) = 3 = F4 ••• z(lj) = FJ+l..., 

and the second row begins with the numbers 4 = 3 + 1,7 = 5 + 2,11 = 8 + 3, and 18 = 13 + 5. The 
reader is urged to write down several terms of the next two rows before reading further. 

The Wythoff array, W = W(i,j), partly shown in Table 1, was introduced by David R. 
Morrison [9], in connection with Wythoff pairs, which are the winning pairs of numbers in 
Wythoffs game. (See, for example, [2], [12]). Morrison proved several interesting things about 
W\ every positive integer n occurs exactly once in W, as does every Wythoff pair; every row is a 
(generalized) Fibonacci sequence [i.e., w(i, j) = w(i, j - l ) + w(i, j-2) for every i> l and j>3] . 
In fact, Morrison proved that, in a sense, every positive Fibonacci sequence of integers is a row of 
W. 

TABLE 1. The Wythoff Array 

1 
4 
6 
9 
.2 

2 
7 
10 
15 
20 

3 
11 
16 
24 
32 

5 
18 
26 
39 
52 

8 
29 
42 
63 
84 

13 
47 
68 
102 
136 

21 
76 
110 
165 
220 

34 
123 
178 
267 
356 

55 
199 
288 
432 
576 

89 
322 
466 
699 
932 

144 
521 
754 
1131 
1508 

14 23 37 60 97 157 254 411 665 1076 1741 
17 28 45 73 118 191 309 500 809 1309 2118 
19 31 50 81 131 212 343 555 898 1453 2351 
22 36 58 94 152 246 398 644 1042 1686 2728 

Morrison also proved that the first column of W is given by w(i, l) = [/a] + / - l , where 
a = (1 + V5) / 2. The rest of W is then given inductively by 

,. . n f[oK'\/)] + l if/is odd, . 
HhJ + l) = l r ^ . . . . fori = 1 , 2 , 3 , . . . . (1) 

[[aw(i, j)] if j is even, 

2. SHIFTING SUBSCRIPTS: Fn+1->Fn+2 

We define a shift function f\N -> N in terms of Zeckendorf representations: 
00 OO 

i f n = X chFh+h *en f(n) = X V W • 
h=l h=l 
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Lemma 1: The shift function/is a strictly increasing function. 

We shall prove Lemma 1 in a more general form in Section 3. 

Theorem 1: The first column of the Zeckendorf array Z determines all of Z by the recurrences 
zQ,j + l) = f(zQ,j)) (2) 

for all / > 1 andy > 1. 

Proof: We have z(l, j) = Fj+l for all j > 1, so that row 1 of Z is determined by z(l, 1) = 1 and 
/ Assume k > 1 and that (2) holds for all y > 1, for all / < k. Write the Zeckendorf representa-
tion of z(k +1,1) as z(k +1,1) = Z^=1 chFh+l, noting that the following conditions hold: 

(i) q = l; 
(ii) ch G {0,1} for every h in N; 
(iii) for every h in N, if ch = 1 then c^+1 = 0; 
(iv) there exists n'mN such that cA = 0 for every h > n. 

Let m = /(z(£ +1,1)). Then the representation T%=iChFh+1, where c[ = 0 and c'h = ch_x for all 
A > 2, is the Zeckendorf representation of w. Also, m is in column 2 of Z, since c[ - 0 and cj = 1. 
By the induction hypothesis, z(z, 2) = /(z(z, 1)) for i'=l,2,...,k, and since column 2 is an increas-
ing sequence, m must lie in a row numbered >k + \ by Lemma 1. We shall show that this row 
number cannot be > k +1. 

Suppose m>z(k +1,2) and let the Zeckendorf representation for z(k +1,2) be £^=1 ^ i ^ + 1 . 
Then the number q - Y^=l dhFh+1, where dh = d'h+l for h > 1, is the Zeckendorf representation for a 
number having dx = \y so that this number lies in column 1 of Z. It is not one of the first k terms, 
and it is not z(k +1,1) since its sequel in row k +1 is not m. Therefore, q = z(K, 1) for some 
K > k + 2. We now have z(£ +1,1) < # and f(q) < f(z(k +1,1)), a contradiction to Lemma 1. 
Therefore, z{k +1,2) = / (*(* +1,1)). 

Let j > 2 and suppose that z(k +1, y) - f(z(k 4-1,7* -1)). The argument just used for j = 2 
applies here in the same way, giving z(k +1, j +1) = f(z(k +1,7)). The induction on j is finished, 
so that (2) holds for all j > 1 for /' = k +1. Consequently, the induction on k is finished, so that (2) 
holds throughout Z. • 

Lemma 2: 
\[ari\ + 1 if /2 is in an odd numbered column of Z, 
[an] ifn is in an even numbered column of Z. 

Proof: The fact that the continued fraction for a is [1, 1, 1, ...] leads as in [10, p. 10] to the 
well-known inequality 

1 1 1 1 
•<\aFh-Fh. - I — n - A + l v

 F 

for h = 1,2, 3,..., and this in turn implies 

-J- < {aFh} < - ? - for odd h (3) 
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and 

— — < {aFh} - 1 < — — for even h. (4) 

Write the Zeckendorf representation of n as indicated by the sum 
n = clF2 + c2F3+c3F4 + -- . (5) 

Then 

Also, 
f(n) = clF3 + c2F4 + c3F5 + --- . (6) 

where 

and 

na = claF1 + c2aF3 + c3aF4 + • • • 
= q(F3 + {aF2}-l) + ̂ (F4 + {fl^3}) + ̂ (F5 + {fl^4}-
= / ( / I ) + SP1(H) + SP2(»), 

^ 1 ( ^ = c1({aF2}-l) + c3({aF4}-l) + c5({aF6}-l)^ 

-1) + . 

) + ••• 

y2(n) = c2{aF3} + c4{aF5} + c6{aF7} + --' 

Case 1: w is an even numbered column of Z. In this case, the least nonzero coefficient cH in (5) 
has an even index H, so that 

ifiin) + &)
2(ji) = {MFH+I} + ̂ e r terms 

^ { ^ y + i } + { ^ + 3 } + - - - < ^ + ^ + - c ^ + - - - b y ( 3 ) 
^Tff+2 ^ # + 4 ^i/+6 

Also, 
3 » + SP2(«) > {aF„+1} + (-1 + {«^+4}) + (-1 + {aFH+6}) + ••• 

> _ L _ „ J — - 1 by(3)and(4) 
^i/+3 ^#+5 ^i/+7 

1 1 (, 1 1 1 V 1 2 
> 1 + —+ — + - + ••• > >0. 

FH+3 FH+5\ 2 4 8 J FH+3 FH+5 
The conclusion in Case 1 is that f(ri) = [na]. 
Case 2: n is an odd numbered column of Z. Then the least nonzero coefficient cH in (5) has an 
odd index H, and 

i¥i(ri) + SP2{n) = -1 + {ai^+1} + other terms 
< -1 + {aFH+l} + { a F ^ } + {aFH+6} + • • • 

< - - ^ + ̂ - + ̂ - + ...by(3)and(4) 
r / / + 3 r / /+5 rH+7 

<~-J—+^-<o. 
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Also 

1 1 1 
FH+2 FH+4 FH+6 

FH+2 

-•••by(4) 

The conclusion in Case 2 is that f(n) - [na] +1. D 

Theorem 2: The Zeckendorf array equals the Wythoff array. 

Proof: Let C be the set of numbers in the first column of Z. Let S be the complement of C in 
the set of positive integers. Let {sj be the sequence obtained by arranging the elements of S in 
increasing order. It is known [4] that this sequence of one-free Zeckendorf sums is given by 
sn = [(/i + l)a]~ 1, Ai = 1,2,3,... . We shall apply Beatty's theorem (see [1], [11]) on complemen-
tary sequences of positive integers to prove that z(i, 1) = [ia] + i-l\ first, ^+-^tr = l, so that, by 
Beatty's theorem, the sequences [na] and[/a] + / are complementary; this implies that the sets 
{[(w + l)a]} and {p<z] + /}u{l} partition TV, which in turn implies that the sequences sn andz(7,1) 
are complementary. Since w(i, 1) = [ia] + i - 1 , we have z(i, 1) = w(i, 1). Now the recurrence (1) 
together with Theorem 1 and Lemma 2 imply that Z-W. 

3. HIGHER-ORDER ZECKENDORF ARRAYS 

Let m be an integer > 2. Define a sequence {$} inductively, as follows: 

s{ - 1 for/ = 1,2,3,..., JW, 
Sj =si_l+si_m for i = m + l, m + 2,..., 

and define the Zeckendorf m-basis as the sequence {b^}, where b^ = sm+J_l for ally in N. It is 
proved in [5] and probably elsewhere that every n inNis uniquely a sum 

bW+bW + '-'+b™, where it-iu>m whenever t>u. (7) 

We call the sum in (7) the in-order Zeckendorf representation of n, and we define the m-order 
Zeckendorf array Z(w) = Z^m\i, j) as follows: column j of Z(w) is the increasing sequence of all n 
in whose /w-order Zeckendorf representation the least term is i jw ) . The first row of Z{m) is the 
Zeckendorf w-basis. Of course, the Zeckendorf 2-basis is the Fibonacci sequence {bf^ =FJ+l), 
and one may view the work in this section as an attempt to generalize the results in Section 2. 
Table 2 shows part of the 3-order Zeckendorf array. 

Next, we generalize the shift function f:N—>N as defined in Section 2. In terms of in-
order Zeckendorf representations, the generalized function / ( w ) is given as follows: 

00 CO 

if» = I r f ) , then/<">(») = 2 > ^ . 
h=l h=l 

6 [FEB. 



THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY 

TABLE 2. The 3rd-Order Zeckendorf Array 

1 
5 
7 
10 
14 
18 
20 
24 
26 

2 
8 
11 
15 
21 
27 
30 
36 
39 

3 
12 
16 
22 
31 
40 
44 
53 
57 

4 
17 
23 
32 
45 
58 
64 
77 
83 

6 
25 
34 
47 
66 
85 
94 
113 
122 

9 
37 
50 
69 
97 
125 
138 
166 
179 

13 
54 
73 
101 
142 
183 
202 
243 
262 

19 
79 
107 
148 
208 
268 
296 
356 
384 

28 
116 
157 
217 
306 
393 
434 
522 
563 

41 
170 
230 
318 
448 
576 
636 
765 
825 

60 
249 
337 
466 
656 
844 
932 
1121 
1209 

Lemma 1: The shift function / ( w ) is a strictly increasing function. 

Proof: As a first inductive step, we have 2 = f(m)(l) < 3 = f{m)(2). Assume K > 2 and that 
for every kx <K it is true that / w ( ^ ) < f^m\K). Let k be any positive integer satisfying k<K. 
Let 

fa = max {/} and h = max{/}. 
V bj<K+lU) l bj<kKJ) 

Case 1; / ? 1 <V Let x = Z > ^ < ^ Since 
x + l = ̂ w ) , we have k <x<K + l and 

/(^)</ww=iw+^+f2ra+.-.+jw<c)i^rs/w^+i)-
Case 2: hx = h0. Here, k - b^ < K +1 - b^. By the induction hypothesis, 

fW(k-b%))<f""\K + l-bW). 
Then 

In both cases, f{m\k) <f{m){K + \) for all k<K + l, so that we conclude that f{m) is strictly 
increasing. • 

Theorem 3: The first column of the m-order Zeckendorf array determines all of the array by the 
recurrences (2) for all / > 1 andy" > 1. 

Proof: The proof is analogous to that of Theorem 1 and is omitted. 

Theorem 4: For every m > 2, the m-order Zeckendorf array is an interspersion. 
Proof: Of the four properties that define an interspersion (as introduced in [7]), it is clear 

that Z(w) satisfies the first three: every positive integer occurs exactly once in Z("°; every row of 
Z(m) is increasing; and every column of Z{m) is increasing. To prove the fourth property, suppose 
/, jy /', f are indices for which 

z(ij)<z(i',f)<z(ij + l). 

Then, by Lemma 1, 

/W(z(i, j)) < fm)(z(i>, / ) ) < fm\z{i, j +1)), 
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so that, by Theorem 3, 
z(iJ + l)<z(i>,f + l)<z(i,j + 2), 

as required. • 

Consider the recurrence (1) which defines the Wythoff array Win terms of the golden mean, 
a. Since a is the real root of the characteristic polynomial x2 -x-1 of the recurrence relation 
for the row sequences of W, one must wonder if the real root a^ of xm - xm~l -1 can, in some 
manner comparable to (1), be used to generate rows of the /w-order Zeckendorf array. The 
answer seems to be no, although certain "higher-order" Wythoff-like arrays have been investi-
gated (see [3], [6]). 

However, Beatty's theorem leads to conjectures about column 1 of Z(w). It appears that each 
row of Z(w) has "slope" a^m\ so that the complement of column 1, ordered as an increasing 
sequence, is comparable to the set of numbers [ia^]. Beatty's theorem then suggests that 
column 1 is "close to" the sequence {c7} given by q = I j^__ I. For example, taking m = 3, let st = 
|-%T-|-[tf(3)]. Let xt denote the z-th number in column 1 of Z(3). We conjecture that \zt -st \< 1 
for all / > 1 . 
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