
SOME SUMMATION IDENTITIES USING 
GENERALIZED g-MATRICES 

R. S. Melham and A. G. Shannon 
University of Technology, Sydney, 2007, Australia 

{Submitted June 1993) 

1. INTRODUCTION 

In a belated acknowledgment, Hoggatt [3] states: 
The first use of the g-matrix to generate the Fibonacci numbers appears in an abstract of a paper 

by Professor J. L. Brenner by the title "Lucas* Matrix." This abstract appeared in the March 1951 
American Mathematical Monthly on pages 221 and 222. The basic exploitation of the g-matrix 
appeared in 1960 in the San Jose State College Master's thesis of Charles H. King with the title "Some 
Further Properties of the Fibonacci Numbers." Further utilization of the g-matrix appears in the 
Fibonacci Primer sequence parts I-V. 

For a comprehensive history of the g-matrix, see Gould [2]. Numerous analogs of the 
^-matrix relating to third-order recurrences have been used. See, for instance, Waddill and Sacks 
[13], Shannon and Horadam [10], and Waddill [11]. Mahon [8] has made extensive use of 
matrices to study his third-order diagonal functions of the Pell polynomials. Recently, Waddill 
[12] considered a general Q-mainx. He defined and used the k x k matrix 

A* 

R = 
1 0 
0 1 

'k-\ 
0 
0 

v 0 0 •••! 0 j 

in relation to a Ar-order linear recursive sequence {Vn}, where 
jt-i 

^ = I>^-i-/, n>k. 
/=o 

The matrix R generalized the matrix Qr of Ivie [5]. 
In the notation of Horadam [4], write 

Wn = Wn(a,b;p,q) 
so that 

K=PK-i-<lW„-2,Wo=a,W1=b, n>2. 

With this notation, define 
U„=W„(0,l;p,q), 
Vn = W„(2,p;p,q). 

(1.1) 

(1.2) 

(1.3) 

Indeed, {Un} and {V„} are the fundamental and primordial sequences generated by (1.2). They 
have been studied extensively, particularly by Lucas [7], Further information can be found in [1], 
[4], and [6], 
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The most commonly used matrix in relation to the recurrence relation (1.2) is 

M={? -0") (i.4) 

which, for p = -q = l, reduces to the ordinary g-matrix. In this paper we define a more general 
matrix M t m parametrized by k and m and reducing to Mfor k = m = 1. We use Mk> m to develop 
various summation identities involving terms from the sequences {Un} and {V„}. 

Our work is a generalization of the work of Mahon and Horadam [9] who used several pairs 
of 2x2 matrices to generate summation identities involving terms from the Pell polynomial 
sequences 

'P„ = W„(0,l,2x,-l), 
Q„ = W„(2,2x;2x,-l). 

We generalize their work in two ways. First, we consider sequences generated by a more general 
recurrence relation. Second, our parametrization of the matrix Mkm includes all the matrices 
considered by Mahon and Horadam as special cases. 

2. THE MATRIX MKm 

Before proceeding, we state some results which are used subsequently. None of these is new 
and each can be proved using Binet forms. If 

A = p2~4q, (2.1) 
then 

Un+x-qUn_x=V„, (2.2) 

^ + i - ^ - i = At/„, (2.3) 

V2k-2qk=AU2
k, (2.4) 

Uk+m-qmUk_m = UmVk, (2.5) 

Vk+m-1mVk_m = AUkUm (2.6) 

Uk+mUk-m-Ul = -qk-mUl, (2.7) 

Vk+Jk-m-Vk
2=Aqk-mUl (2.8) 

Un+mU„i+m - qmU„Uni = UmUn+ni+m. (2.9) 

By induction it can be proved that, for the matrix M in (1.4), 

M,JuM -<,u„ 
V U„ -qU„_ly 

where n is an integer. 

(2.10) 
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We now give a generalization of the matrix M. Associated with the recurrence (1.2) and with 
{U„} as in (1.3), define 

Ujc+m "Q Uk I (2 11) Mum = 
Uk -qmUk_n 

where k and m are integers. By induction and making use of (2.9), it can be shown that, for all 
integral n, 

1V1k,m ~ Um 

fjj rtmJJ ^ 
Unk+m H unk (2.12) 

V Unk q Unk_mj 

When k = m = 1, we see that Mk^m reduces toMand M^m reduces to Mn. 

3. SUMMATION IDENTITIES 

We now use the matrix Mktm to produce summation identities involving terms from {Un} 
and {Vn}. Using (2.5) and (2.7), we find that the characteristic equation of Mk m is 

A2-UmVkA + qkU2
m=0 (3.1) 

and, by the Cayley-Hamilton theorem, 

Mlm -UmVkMKm +qkU2J = 0, (3.2) 

where / i s the 2x2 unit matrix. From (3.2), we have 

<UmVkMKm -qkU2
mIfMim = M\n;j, (3.3) 

and expanding yields 

±(f\{-\y-iqk{"-°Ul"-%Mi
k
+i = M2

k:+J. (3.4) 

Using (2.12) to equate upper left entries gives 

2 J / K V # Vk U(i+j)k+m ~ U(2n+j)k+m • P • 5) 
/=ov J 

Again from (3.2), 

(Km+qkU2Jf = U"mVk"Mlm, (3.6) 

and expanding we have 

ti^^Ul^M2^ =U"mVk"Mlm. (3.7) 

Using (2.12) to equate upper left entries gives 

i(f\qk0^Uvlt+m = Vk'Uric+m. (3.8) 
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Once again, from (3.2), 

{M2Km-qkUjf = Um(V2k -2qk)M2Km = AUmU2
kM2Km, (3.9) 

and expanding, after taking 71th powers, we have 

£ f 2 f \-\yq
k^U2rM\Km = A"U"mUl"M^m. (3.10) 

Equating upper left entries yields 

i ( Y ) ( - l ) ' \ K 1 " ^ ^ m = *?U2
k"U2nk+m. (3.11) 

/=0 ^ ' 

From (3.9), 

(M2,,w - /C/ w / ) 2 w + 1 = *UlUl\MS)m ~qkUmMlK J . (3.12) 

Equating upper left entries yields, after simplifying, 

i t ^ V ^ Y ^ ^ t W = A"^2"(t/2(„+1)i+m -qkUM+m), (3.13) 

and using (2.5) to simplify the right side gives 

ZT2n/+1]<-1),+,^(a"W)£/»*- = A"^ V * ) " - (3-14) 
1=0 ^ ' 

This should be compared to (3.11). 
Manipulating the characteristic equation (3.1), we have (2X-UmVk)2 = AU^Y2, so that 

(2MKm-UmVjf"=A«Ul«U2
k"I. (3.15) 

Expanding gives 

l ( ? ) ( - l ) ' ^ ^ < . = A"l /> t
2 " / . (3.16) 

;=0 ^ ' 

Equating upper left entries and also lower left entries yields, respectively, 

X( 2 f ) ( - ! ) ' • I 'VT'U^ = A"U2
k"Um, (3.17) 

2r 

I 

i(^(-l)'2'K^^=0. (3.18) 
/=0 V 

We note that (3.17) reduces to (3.18) when m = 0. 
Multiplying both sides of (3.15) by {2Mk^m-UmVkI) and expanding gives 

H^V1^^ = ^lnUln{2MKm-UmVkI). (3.19) 
;=0 ^ ' 
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Equating upper left entries yields 

I ' ( ^ t l\-V+ilVZ"+l-%k+m = A"U2
k"+1Vm, (3-20) 

1=0 ^ ' 

which should be compared to (3.17). 
Now, using (3.5), we have 

2 J / jv V 9 Vk\U(i+J)k+m+l ~ <lU(i+j)k+m-l) ~ ^(2n+J)k+m+l ~~ (l^'(2n+j)k+m-l> 

and (2.2) shows that this simplifies to 

i ( " \ - i r qki"'0ViV,+J)k+m = V{2n+J)k+m. (3.21) 

Making use of (2.2) and (2.3) and working in the same manner with identities (3.8), (3.11), 
(3.14), (3.17), and (3.20) yields, respectively, 

±(^)qk(n-%ik+m=VkXk+my (3.22) 

l(2?\(-Vqk{2n-%ik+m = ^"Ul"V2nk+m, (3.23) 

2 f f 2" + ^ ( - l y ' V (2n+1"V2,i+m = A"+1U2
k"+lU(2n+l)k+m, (3.24) 

7=0 ^ ' 

t(2")(-m%2"-%+m = A"C/,2Tm, (3.25) 
7=0 ^ ' 

I p Y ^ - r ^ T r 1 - ' ^ , = A^UJTUm. 0.26) 
7=0 ^ ' 

2/7 

Z 
7=0 

2 » + l 

2 /7+1/ 

In what follows, we make use of the following result: 

1VIk,m1V1kl,m ~Um 

fjT -amTJ ^ 
w/7& +n1kl+m */ ^ w ^ + W j ^ 

y Unk+nfa ~(i ^nk+nfa-mJ 
(321) 

This is proved by multiplying the matrices on the left and using (2.9). 
Consider now the special case of (3.2), where k = m. Then, using (2.5), 

Kk=U2kMk^qkUll. (3.28) 

Using (3.28) and (2.9), we can show by induction that, for n > 2, 

M"k,k = U"k-2(UnkMkk-gkUkU^l)kI). (3.29) 
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The binomial theorem applied to (3.29) gives 

^^iifli-^^^rU^UUA^i = Mn
k%> (3.30) 

Equating lower left entries of the relevant matrices then yields 

E f ^(-ly-'q^-'K-wU^nic = Us
kU(m+J)k. (3.31) 

z=(A ' 

Multiplying both sides of (3.30) by Mk ^ and using (3.27) to equate lower left entries gives 

£-\i K-"^ % U(n_l-)kUnkU(i+J-)k+ki =UkU(jls+fik+kl, (3.32) 
z=0 

which generalizes (3.31). 
Again from (3.29), after transposing terms and raising to a power s, we obtain 

iifl^tfT^UfcykKk = Ui"-2)sUs„kM^k, (3.33) 
/=<A ' 

which yields 

t(f\9H'~0U'kUg.1)kUnlk = Us
nkUsk. (3.34) 

/=(A ' 
Multiplying both sides of (3.33) by Mk^k and using (3.27) to equate lower left entries gives 

i f flq^UlU^tU^ = KkUsk+kx, (3.35) 
/=(A ' 

which generalizes (3.34). 
Continuing in this manner after yet again transposing terms in (3.29) and raising to a power s, 

we obtain 

if-leiy^r2^"0^'^1''"^^^"-0^-.)^- (3-36> 
/=(A ' 

Equating upper left entries and lower left entries yields, respectively, 
Hfli-tiUlUZU^^yt = qksUs

{n_X)kUk, (3.37) 

tfjl(-l),^^«-iy«)*=0. (3.38) 
/=(A ' 

Multiplying (3.36) by Mk tk and equating lower left entries yields 

£ ( f ) ( - l ) ' W ^ - i ) , - ^ * , = fU'^U^ . (3.39) 
7=(A ' 
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We note that, when kx=k, (3.39) reduces to (3.37) and when kx = 0, (3.39) reduces to 
(3.38). 

Now, manipulating (3.32), (3.35), and (3.39) in the same way that (3.5) was manipulated to 
yield (3.21), we obtain, respectively, 

i(i](-iy'iqHs'iK-mU^+j)^t = Us
kV{m+j)k+ki, (3.40) 

tlfiq^UlU^V^ = Us
nkVsk+ki, (3.41) 

E ( f ) H ) ' ^ M ViW*+* = qksUl„_l)kVh . (3.42) 
7 = 0 V / 

4. THE MATRIX ^ 

We have found a matrix having the property of generating terms from {Un} and {Vn} simul-
taneously. It is a generalization of the matrix ^introduced by Mahon and Horadam [9]. Define 

, k an integer. (4.1) xk = yWk VkJ 

Then by induction we have, for integral n, 

X? = 2"-{V"k U"k\ (4-2) 

Noting that X™+" = X™ • X" produces the well-known identities 

iym+n=VmVn+MJmUn, (4.3) 

2Um+n = VmUn+UmVn. (4.4) 

The characteristic equation for Xk is 

X2-2VkX+4qk =0 (4.5) 

and so, by the Cayley-Hamilton theorem 

X2
k-2VkXk+4qkI = 0. (4.6) 

Using (4.3) and (4.4), we see that 

X"kXk=2" i ^nk+kx U nh+kx 

y^UnJc+ki Vnk+ki 
(4.7) 

Considering the case k = 1, we can show by induction, with the aid of (4.6), that 

X"l=2"-\UnXl-2qUn^I), #i>2, (4.8) 

which is analogous to (3.29). 
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It is interesting to note that the methods applied to Mkt7n when applied to Xk produce most 
of the summation identities that we have obtained so far. The exceptions are the identities that 
arose by using (3.29). The analogous procedure for Xk is to use (4.8), but the identities that arise 
are less general For example, (4.8) produces 

(4.9) 

which is a special case of (3.32). 

5. THE MATRIX N. k,m 

We have found yet another matrix defined in a similar manner to Mk^m whose powers also 
generate terms of the sequences {£/„} and {Vn}. Define 

Then for all integral n, 

Nk,m = 
V, -amV k+m H vk 

yVk 

T2n T2n-\ \n 
^k,m-Um a 

Ulnk+m Q "ink 

V U2nk ~<i Vlnk-mJ 

(5.1) 

(5.2) 

N, 2n-l _ jj2n-2 kn-1 
k,m ~Um a 

V(2n-l)k+m 9 ^{2n-l)k 

~H V{2n-\)k-mJ V V{2n-\)k 

The characteristic equation of Nkt m is 

A2-AUkUmA-AqkU2
m = 0, 

and so 
kT12 • N^m-AUkUmNk^-AqKWj = 0 

(5.3) 

(5.4) 

(5.5) 

Using the previous techniques and due to the manner in which powers of Nkt m are defined, 
we have found some interesting summation identities. We note, however, that some of the 
methods applied to Mk%m do not apply to Nktm. For example, we could find no succinct counter-
part to (3.29). We state only the essential details and omit summation identities that we have 
obtained previously. 

Manipulating (5.5), we can write 

AUm(UkNKm+qkUmI) = Nlm (5.6) 

and 
(2Nk,m-AUkUJ)2 = AU2

mVk
2I. (5.7) 

From (5.6) and (5.7), we have 

A"U"m(UkNKm+qkUjy=N2
k:m, (5.8) 
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{2Nk>m-AUkUmI)2n = A"U2
m"Vk

lnI, (5.9) 

{2NKm - AUkUJ)2"+l = A"U2
m"Vk

2\2Nk,m-AUkUmI). (5.10) 

Now expanding each of (5.8)-(5.10) and equating upper left entries of the relevant matrices leads, 
respectively, to 

± fty^Mu**.+i(?y ("-°A%^+m=u2nk+m, (5.11) 
/' even / odd 

£ (yyA^UJrU^-%J^)2'A^U^V^=V^Um, (5.12) 
/' even / odd 

2 « + l / 0 , - , \ 7„4.i_/ 2n 

f (ln + l)2>A-^U?^Vik+m- t {2n;l)2'A^Ur^Uik+m=V2^Vm. (5.13) 
7 = 1 V J 7=0 

i odd /even 

Finally, making use of (2.2) and (2.3) and applying to (5.11)-(5.13) the same technique used to 
obtain (3.21), we have 

± ^y^/tuUr*** + I (f)<f™ ^U'kUik+m = V2nk+m, (5.14) 
even /' odd 

2w A-»„\ ,„_, 2/7-1, X ( f J2'A^2"-%+ m - l ( ^ 2 ' A ^ [ / r ^ + m = ̂ 2TfflI (5.15) 
/odd 

fl2*;1)*A^u2r-vik+m- s p y ^ A ^ U ? * - > v i k + m = A F - ^ . a ^ 
7=1 ^ ' z=0 ^ ' 

/ odd 7 even 
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