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1. INTRODUCTION 

Given A, ju eZ, the associated Lucas sequence {yn}n>0 is defined by the binary linear recur-
rence 

ro = ®, Yi = \ and yn+l = Ayn+juyn_l for n>0. (1.1) 
In this article we will show how these sequences may be used to give new proofs of the quadratic 
reciprocity theorem. It is well known that these sequences have the ordinary formal power series 
generating functions 

«=1 

where P(t) = 1-At-jut2. The reciprocity law follows from certain integrality relations in the 
formal power series ring Q[/] between these generating functions and a generating function for 
the quadratic character modulo the discriminant of P(f). The only other tools needed are the 
elementary properties of quadratic Gauss sums. 

2. LUCAS SEQUENCES AND THE LEGENDRE SYMBOL 

The following formal power series identity expresses an interesting relation between the 
sequences {yn} and the Legendre symbol (n\q), where \q\is the discriminant of P(t). 

Theorem: Let q be an odd prime and set D = (-l\q)q. Choose any integers A, ju such that 
A2 +4ju - D, and define the sequence {yn} by the recursion (1.1). Then there is a unique formal 
power series <j) with integer coefficients and constant term zero such that 

00 <f>(t)n °° r-^ 
„=i n n=l\q 

n 
J 

t 
- (2-1) 
n 

holds as an equality of formal power series. 

Proof: Let £ be any fixed primitive q^ root of unity. We define the quadratic Gauss sums 
r{n) modulo q by 

k™. (2.2) 

It is an elementary property of these sums ([1], Theorem 9.13) that r(l)2 = D and, therefore, r(l) 
is a square root of D. Hereafter, we dispense with the ambiguity in sign and simply define *J15 to 
be r(l). Now, since Z^lJ C = °> w e have 

4-1 A 

is 1 + VZ) 
J-l\f=Ll^, (2.3) 
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which shows that (1 + 4D)I2 lies in the ring Z[£] and, therefore, ©^ = Z[(l + VZ))/2]c / [£] . 
We also recall the separability property r(n) = (n\q)4J5 for every integer n ([1], p. 192, eq. (17)). 

Define the rational function/by 

/«=no-£"')' -(o|?) (2.4) 
0=1 

It is readily seen that as a formal power series in t, the coefficients off lie in Z[£]. Set P(t) = 
I-At-fit2 =(l-at)(l-fit), where the reciprocal roots a,J3 are chosen so that a- (3 = 415. 
Then define the rational fiinction </> by 

m=-qf(t)-P 
We claim this function </>, as a formal power series in t, satisfies the conditions of the theorem. 

We first show that <j> satisfies the equality (2.1). We compute that as formal power series, 

(2.5) 

iog/(o=logf fta-^rr^ I=-I 
\a=l J a=\ W 

log(l-C0 

' - V 
(2.6) 

On the other hand, solving (2.5) for/yields 

/(0 = i-MO 
l - a # f ) 

Since / ( 0 ) = 1, we have ^(0) = 0; therefore, we may also compute that as formal power series, 

(2.7) 

log/(0 = logj i-MO = iog(i-AK0)-iog(i-«$K0) 

n=\ n 

(2.8) 

= E(a"-/?M)^L=V^Ir„-
n=l 

using the well-known Binet formula 

Yn 
a -i 

a-P 
(2.9) 

(Note that expressions such as YaY J>n In make sense as formal power series in t, since the con-
stant term of (j) is zero.) Now, comparing the two expressions (2.6) and (2.8) shows that (f> 
satisfies (2.1). 

Turning now to the coefficients of <f>, we write (j){t) = Z^Li antn. Equating coefficients of r in 
(2.1) yields ax = 1; equating coefficients of fw yields a recursion for an in terms of al9 ...9an_u 

demonstrating the uniqueness of (j). We first show that the coefficients of <j> are rational: Suppose 
not, and let k be minimal such that ak &Q. For 1 < j < k, let hj denote the coefficient of tk in 
(f>(t)J; then bl=ak <£ Q, while ft. e Q for 1 < j < k. Equating coefficients of tk in (2.1) yields 
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% J \q)k 

which is impossible, since bx ^Q while all other terms in (2.10) lie in Q. 
Now we show that the coefficients of (f> are integers: Suppose not, and let k be minimal such 

that ak &Z. Again let bj denote the coefficient of tk in <j)(t)J for l < y < k; then bj <EZ for 
\<j<k, while bx = ak = rIs for some coprime integers r, s with \s\> 1. Expanding (2.7) for-
mally yields 

/(o=(i-MO)fl:«wr)=i+v^£a"-v«n, (2.11) 
\n=0 J n=\ 

and therefore the coefficient of tk in/is 

4D(bx +ab2+'- + ak'%). (2.12) 

We know from (2.4) that this coefficient lies in Z[£], and we observe that Jl5(ab2 + • • • + ak~lbk) 
lies in the subring 0^, since a = (/l + J~D)/2. So we must have ^VJD eZ[£L a n^ therefore 
{bx4Df =r2DIs2 eZ[£J. This is a contradiction, since r2DIs2 e<Q\Z, whereas Z[41^>Q = Z. 
This proves the theorem, and in passing also shows via (2.12) that/has coefficients in €D. 

3. THE LAW OF QUADRATIC RECIPROCITY 

Theorem (Gauss): Let/? and q be distinct odd primes, and set D = (-%)#. Then 

Proof: Choose any integers X,// that satisfy /l2+4// = Z), and let P(t) = l-Xt~jut2 = 
(1 - otf )(1 - ySf) and ^ be as in the above theorem. For 1 < k < p, let i t denote the coefficient of 
tp in ^(f)*. Equating the coefficients of tp in (2.1) yields 

^ & h (f) 
P t-i * P 

so that 

\Z)-rP=Pl,rltf. (3.3) 

Therefore, the sum HkZ\ykbk ^ ^e s *n Ql P)%-\ but the least common denominator of the terms 
is relatively prime to/?, since each yk and bk lies in Z. So this sum must be an integer; thus 

y p s ( £ ) (mod^Z). (3.4) 

(3.1) 

On the other hand, we may easily compute (cf. [5], Corollary l(i) with m = r = 1) 

r'-ST]S-'^f -(&r>.*"*.fi) (mod,Z); (3.) 
a-p a-fi yp) 
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the first congruence holds modulo p€D , but both members are integers, so It holds modulo pTL. 
Thus, (p\q) = (D\p) (modp), but both are ±1, so they must be equal 

4o CONCLUDING REMARKS 

The quadratic Gauss sums have played a role in many quadratic reciprocity proofs, reaching 
back to Gauss's sixth proof published in 1818 (cf. [3]). Although our approach has features in 
common with other proofs of the reciprocity law, it does exhibit an unusual flexibility by giving, 
for fixed/? and q, an infinite family of proofs corresponding to the variety of choices for X and ju. 

In [5], we employed elementary /?-adic methods to prove congruences relating the ratios 
Y r IY r-i to the Legendre symbol (D\p). In the language of formal group laws, these congru-
ences imply that the formal differential a> = P(t)~l dt is the canonical invariant differential on a 
formal group law defined over Z, which is isomorphic over Z to the formal group law attached to 
the Dirichlet ^-series L{s, %) for the Dirichlet character % of conductor \D\ associated to the 
quadratic field K = Q(\lD). Formally differentiating both sides of (2.1) and using (1.2) gives 

\ n *"f, (4.D 
which implies that the power series ^ defined in §2 actually is the isomorphism between these 
two formal group laws; however, we have used no formal group techniques in the construction of 
$. The above theorem says that the differential equation (4.1) has a rather surprising property, 
namely, that of possessing a solution (j)(t) at t = 0, which is a rational function whose Maclaurin 
series has integer coefficients. It may be interesting to know the coefficients of ^ more explicitly. 

The use of formal group techniques to prove reciprocity laws originated with T. Honda [2], 
who gave a proof of quadratic reciprocity using formal group laws and Gauss sums. However, 
Honda used a formal group law defined over 6D rather than over Z, and used the Galois theory 
of the extension Q c: 

Q(VZ>)eQ(£) to prove QD -integrality, whereas the present argument 
requires no such techniques. 

It does not appear that our method readily proves the auxiliary result (2\q) = (-lYq ~1)/8, 
which amounts to a congruence for q modulo 8. But it is easy to determine from (2.1) that 
a2 = ((2\q) -X)/2, and one may also note that 

- 1 = 1 <=> q = ±1 (mod 8) o D = 1 (mod 8) o ju = 0 (mod 2). (4.2) 
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