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Let a and b be two distinct letters and let r = (V5 -1) / 2. Let x be the infinite string whose 
w* term is W if [(w + l)r] - [TIT] = 0 and is !,6,f if [(w + l)r] - [nr] = 1. Let sm be the left factor of 
x of length m and let xm be the corresponding right factor of x. Note that x = x0 is the golden 
sequence. It is known that 

X — LfiL"jLfoL^A... I JL i 

where cQ = a, q = A, and cn+l = ̂ . ^ (w > 1). In the notation of [l]-[3], x = F 1 ^ , aZ>), cn - w*+1 

and 5F = w% (n<l), where Fn denotes the n®1 Fibonacci number. 
Hofstadter [6] formulated the concept of aligning two strings. By way of illustration, we pre-

sent the procedure by which xm is aligned with x = x0. 
Starting from the (m + Yf term in x, an attempt is made to match each term in x with a term 

in xm. After a term in x is matched with a term in xw? one looks for the earliest match to the next 
term in x. Those terms in xm that are skipped over form the extracted string ym0. For example, 
when m = 4, 

x4: a b a h b a b b a b a h b a h a h b -" 

x: b a b b a b a b b a b b 
y4Q: a b a b a b ... 

It was Hendel and Monteferrante [4] who first reformulated Hofstadter's alignment concept 
in terms of a formal relation on strings. If xm aligns with xn with extraction ymn, then we nota-
tionally indicate this by 

Xm ^ Xm ym,n • vA) 

[4] also introduced the idea of representing xm as a product of ca with specific properties by using 
a canonical representation xm - ca(ifa(2y- where a(k) is an increasing function on the positive 
integers that can be derived from the Zeckendorf representation of m as a sum of Fibonacci 
numbers. Using this, they were able to completely determine ym0 for all positive integers m. 

The goal of this paper is to determine the remaining cases of ym^n. In Section 2, y0m is found 
to be precisely the reverse R(sm) of the left factor sm of x of length/w. 

Here the reverse operation R is defined by 
R(a1a2...ak) = ak...a7al9 

where al,a2,...,ak are letters. The importance of the reversal operation in studying x was first 
observed by Higgins [5]. In Section 4, it is shown that ym^n and Jw_i5„_i differ by at most the first 
letter. From this, ymn can easily be determined by j w _ w ? 0 (if m > n) o r y^n-m ( f n > m)-
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1. BASIC LEMMAS AND DEFINITIONS ON EXTRACTION 

The following definitions come from [4, Definitions 1 and 2]. Suppose that U = u1...un, 
V - vx ...vm, and E = el...ep with ui,vj9ek e{a,b},n,m>0,p>0, and n = rn + p. We say that U 
aligns (with) V with extraction E if there exist integers 7(0), y'(l), y'(2),..., j(p) such that 

U = (vx... vxl)M(v7.(1)+1... vj(2))e2 ... ep(vJ(p)+l... v J , 

with vy... vk empty if A < / and 

(i) 0 = y(0) < 7(D < 7(2) < • • • < j{p) < m, 
(ii) et*vm+l9 forl<i<p. 

This relationship is called an alignment and is denoted by U z> V; E. The strings U, V, and E 
are called the original, aligned, and extracted strings, respectively. If U - V, we write UZDV;1, 
where 1 denotes the empty string. 

Suppose that U, V, and E are (possibly infinite) strings. Suppose that U(ri), V(n), and E(n), 
n>\, are sequences of finite strings such that U(n)zDV(n); E(ri), limU(n) = U, limV(n) = V, 
and lim E(n) = E. Then we say that U aligns V with extraction E. This alignment is also denoted 
byUiDV;E. 

Lemma LI [4, Lemmas 1 and3J: 

(a) (Uniqueness of extracted string) For given strings [/and V, there is at most one string E 
such that U ID V;E. 

(b) (Concatenation) If U^VU and£"/? \<i<m, are strings of finite lengths and if Ui z> 
Vt\Ei9 \<i<m, then 

UlU2..Mm^Vr2^Vm;ElE2...Em. 

Lemma 1.2: 
(i) cn=5c„_i; c„_2, w>2. 

(ii) c„^c„; 1, « > 1 . 
(ill) c„=c„_2c„_„ « > 2 . 
W c„c„+i...cp^c„+1 ...c^c,,, 1 <«</>. 
(v) c„c„+23c„+2; c„, »>1 . 

(w) C„C„3C„+1; C„_2, « > 2 . 

(w9 c»c»+3 => c„+1c„+2; c„, n > 0 . 

Proof: Part (i) has been proved in [4] by induction. Parts (ii) and (iii) are trivial. According 
to (i) and (ii), we have 

CnCn+l 3 Cn+U Cn 

cn+i=>c„+i;l, 2<i<p-n. 

Part (iv) now follows by concatenation [Lemma 1.1(b)]. The proofs of (v)-(vii) are similar to 
(iv). 
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Lemma 1.3: Let t > 1. Let ^(0) = 0 and let y(l),...,y(t) be positive integers such that y(i) + 2< 
y(i + l), l<i<t-l. Let 

1^2 • • • 

cxc2 .. 

(P&L 

Wfrity+i 

•cy(i)-icy(i)+i> 

•~cy(iyi)(cr(i)+i- ••cr(2)-i)* \cy(t-i)+i • ••c
r(0-i)cr(0+i ' 

iff = 1, 

otherwise v = < 
£ = cr(1)cr(2)...cr(0? 

where the factor cxc2 ... C^D-I does not appear if ^(1) = 1. Then UZDV; .E. 

Proof: By Lemma 1.2, we have 
CXC2 ... Cr(1)_x ZD Of 2 ... ^r(i)_i ; 1, if r ( l ) > l , 
Cr(i)Cy(i)+l •'' Cy(i+l)-l ^ Cr(0+1 ' ' ' Cr0'+1)-1> C r ( 0 ' 1 ̂  * ^ * ~ 1> 
cr(Ocr(f)+iDCr(0+i; cr(0' 

The result now follows by concatenation. 

Lemma 1.4[4, Lemma 5]: Let m>\ haveZeckendorf representation 
m = Fk{l)+Fk(2) + '~+Fk(t) ( 3 ) 

with Jfc(l)>2, k(i) + 2<k(i + l\ z = l , . . . , f - l . Let ^(/) = Jfc(j) - 1 , l < / < r , and let F be as in 
Lemma 1.3. Then 

Xm ~ ^Cy(t)+2Cy(t)+3 ••• • ( 4 ) 

The ordered collection of indices 1,2,..., y{\) -1, y(l) +1,..., y(2) -1,..., y(t -1) +1, ..., p(0 - 1 , 
y(f) + l, y(f) + 2,... is called the canonical representation of xm. Actually [4, Definition 3] uses 
the term "canonical representation" to refer to the function of the positive integers enumerating 
this ordered collection. However, in the sequel, if there is no ambiguity, we will simply, by abuse 
of language, call (4) the canonical representation of xm. 

Corollary 1.5: Let xm = ca(1)ca(2)... be a canonical representation. Then 

(i) (a(l), a(2)) e {(1,2), (1,3), (2, 3), (2,4)}. 
(ii) a(Jfc + l)e{a(Jfc) + l,a(ifc) + 2}, for all ik > 1. 

(Hi) There exists a positive integer r such that a(k +1) = a(k) +1 for all k > r. 

2. THE ALIGNMENTS x 3 xm; j 0 > m AND xm => x; j m ? 0 

We now express the extraction y0m in terms of the ci. 

Lemma 2.1: For m > 1, let TW have Zeckendorf representation (3). Let y(i) = &(/) - 1 , 1 < /' < t. 
Then 

^0,™ ~Cy{\) '-'Cy(t)^ 

where ^ is defined by (2). 
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Proof: The result follows from (1), (4), Lemma 1.3, and Lemma 1.2(11) by concatenation. 

Next, we look at the left factors of the golden sequence. Let 

wl = a, x2=b,wn+1=wnwn_h n>2. 

In the notation of [l]-[3], wn = w°, n>\. 

Lemma 2.2: Let n > 4. Then wnwn is a left factor of x. 
Proof: First, observe that 

= (WnWn-l)(Wn-lWn-2) 

= w„wn_lw„_2wn_3wn„2 

= wnwnwn_3wn_2. 

By Lemma 1.4 of [3], wn+2 is a left factor of x, for all n > 4. The result immediately follows. 

Lemma 2.3: Let m > 1 have Zeckendorf representation (3). Then 
Sm=Wk(t)"-Xk(2)Wk(l)-

Proof: The result clearly holds for m = 1, 2, 3. Suppose m > 4 and that the result is true for 
all positive integers less than m. 

First, suppose t = 1 so that, by (3), m~Fn for some n. By Lemma 2.2, wn is a left factor of 
x. By definition, sm is also a left factor of x. Since both these left factors of x have the same 
length F„, they are both equal. 

Next, suppose that t > 1. Then, by (3), 
Fk{t) <m<Fk(t)+i ^ 2Fk(ty 

Note that sF = wk^ since they are both left factors of x of the same length, let 

where s has length m-Fk^. By Lemma 2.2, wk^wk^ is a left factor of x. Since sm = wk^s is 
also a left factor of x, it follows that $ is a left factor of wk^. Therefore, s = sm_F ; hence, 

Sm = Wk(t)Sm-Fk(t) • 

By the induction hypothesis, the Zeckendorf representation 
m ~ Fk{t) = Fk(t-\) + * * • + Fk(2) + Fk(l) 

gives the factorization 
Sm-Fk(t) = Wk{t-\) ''' Wk(2)Wk(l) • 

Consequently, sm has the desired factorization. 

Theorem 2.4: For m > 1, 

yO,m=R(Sm)-
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Proof: We have 

R(sm) = R(wk(l))R(wk(2)) • • • R(wk(t)\ by Lemma 2.3, 
= %(i)-A(2)-i ••• ck(t)-h by the result, R(w„) = c„_1? of Theorem 3 in [1], 
= cr (1 ) . . . cr(f), using the notations of Lemma 1.4, 
= y0ftn, by Lemma 2.1. 

Theorem 2 5 (Modified Hofstadterfs conjecture [4]): Let m > 2 have Zeckendorf representation 
(3). Then 

xm ZD x; arm_1? if £(1) = 2 and &(2) is even; 

xmz>x; xm_2> otherwise. 

In other words, ymS> - cccm_l in the first case (this is also true when m = 1) and ymQ) = xw_2 in the 
second case. 

3. SOME LEMMAS 

The goal of this section is to prove that, under appropriate conditions, if s ZD t; u, then cps ZD 
t; c u. The precise statement and conditions are set forth in Lemma 3.5. The major tool in prov-
ing Lemma 3.5 will be Lemma 3.1, which considers three cases. 

Throughout this section, we let p > 2 and we let 

S ~ Ca(l)Ca(2) ' •• 

t = Cfi{l)Cfi(2)'~ 
with 

a(l) = p + 2 or/7 + 3, 0(1) = p + l or p + 2. 

We suppose that r is a positive integer such that, for k < r, we have 
a(k +1) G {a(k) +1, a(k) + 2}, fi(k +1) e {fi(k) +1, £(Jfc) + 2}, 

while, for & > r, we have 

a(k +1) = a(Jfc) +1, jff(Jfc +1) = /?(£) +1. 

Lemma 3.1: There is some k such that either cases (i) and (ii) listed below hold, or else case (iii) 
below holds for all k. 

Case (i). There exists a string uk such that 
ca{\) • •• ca(k) ^ CA1) • • • CP{k)> Uk > CO 

cpcaQ) • • • Ca{k) ^ CJ3(1) • • • C/3(k) J C /?% • ( 6 ) 

Case (ii). There exists a string % such that 
Ca(l) • • • Ca(k-l)Ca(k)-2 ^ C£(l) • • • cfi(k)> uk> (J) 

CpCa{\) • • • ca(£-l)ca(£)-2 ^ c/3{\) • • • C/TO> C p ^ ' W 

Case (iii). 
/?(£) = a ( £ ) - l , (9) 
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and there exist strings uk and vk such that 
vkCa(k)-l=cpUk, (10) 

ca(l) • • • ca(k) ^ c(3(l) • • • Cp{ky uki 0 1) 

CpCa(l) •• • Ca(k-l)Ca(k)-2 ^ Cp(l) • • • C0(k)> Vk- 0-ty 

The factor ca(1)... ca^k_^ in (7), (8), and (12) does not appear if k = 1. 

Proof: Lemma 3.1 follows immediately from the statements of Lemmas 3.2 and 3.3 which 
are proved below. 

Lemma 3.2: If k = 1, then one of the three cases listed in Lemma 3.1 holds. 
Proof: There are four cases to consider, according to the values of a(l) and /?(1). 

Case (a). a(l) = p + 2 and (3(1) = /? +1 
We show that case (iii) holds with ux - cp and vx = cp_2- Clearly (9) holds. By Lemma 

1.2(iii), (10) is satisfied. Alignment (11) follows from Lemma 1.2(i), while alignment (12) 
follows from Lemma 1.2(vi). 
Case(b). a{\) = p + 2 and/?(l) = p + 2 

We show that (i) holds with u{ = ]. Then (5) follows from Lemma 1.2(ii) and (6) follows 
from Lemma 1.2(v). 
Case (c). a(l) = p + 3 and /?(!) = p +1 

We show that (ii) holds with ux = l. Then (7) follows from Lemma 1.2(ii) and (8) fol-
lows from Lemma 1.2(iv). 
Case (d). a(l) = p + 3 and /?(1) = p + 2 

We show that (iii) holds with ux =cp+l and v{ = . Clearly (9) holds. Lemma 1.2(iii) 
implies equation (10), alignment (11) follows from Lemma 1.2(i), and (12) follows from 
Lemma 1.2(iii). 

Lemma 3.3: Suppose, for some integer k > 1, case (iii) of Lemma 3.1 holds. Then, for k +1, one 
of the three cases of Lemma 3.1 holds. 

Proof: First, note that, by (9), [3(k +1) e {a(k), a{k) +1}. There are now four cases to con-
sider, according to the values of a(k +1) and f5(k -f 1). 

Case (a). a{k +1) = a(k) +1 and fi(k +1) = a(k) 
Let 

uk+\ = ukca(k)-i and vk+l = vkca(k)_3. (13) 

We show that (iii) holds with k +1 replacing k. Clearly (3{k +1) = a(& +1) - 1 . By Lemma 
1.2(iii) and (10), we have 

Vk+lCa(k+i)-l ~ VkCa(k)-3Ca(k) ~ VkCa(k)-3Ca(k)-2Ca(k)-l 

- VkCa(k)-lCa(k)-l = CpUkCa(k)-\ ~ CpUk+V 

This demonstrates that (10) holds with k replaced by k +1. 
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To prove that (11) holds with k + l replacing k, we concatenate the following two align-
ments: (11) as is, with k and ca(^k+V} z> c^k+l^ ca^_h the last alignment following from 
Lemma 1.2(i). 

To prove that (12) holds with k + l replacing k, we concatenate the following two align-
ments: (12) as is, with k and cf l ( j k Hca ( W ) .2Dc^+ 1 ) ; catk)-3> t h e l a s t alignment following 
from Lemma 1.2(vi) with n = a(k). Alignment (12) with k +1 replacing k then holds since, 
by Lemma 1.2(iii), caik)_2caikyi = ca{k). 

Case (b). a(k + l) = a(k) +1 and fi(k +1) = a(k) +1 
Let uk+l - uk. We prove that (i) holds with k + l replacing k. 
To prove that (5) holds with k + l replacing k, we concatenate the following two align-

ments: (11) and ca(k+V) z> c^k+l); 1, this last alignment holding by Lemma 1.2(11). 
To prove (6) with k + l replacing k, we concatenate the following two alignments: (12) 

and ca(jt)_1ca(jt+1) ZDC^k+l); ca^_ly the last alignment following from Lemma 1.2(v). Align-
ment (6) with k + l replacing k then follows from (10) and Lemma 1.2(iii) with n = a(k). 
Case (c). a(k +1) = a(k) + 2 and fi(k +1) = a(k) 

Let uk+l = uk. We show that (ii) holds with k + l replacing k. 
To prove (7) with k + l replacing &, we concatenate the following two alignments: (11) 

and ca(k+ly2 ^ cp(k+iy ^ ^ e ' a s t alignment following from Lemma 1.2(ii). 
To prove (8) with k + l replacing k, we concatenate the following two alignments: (12) 

and ca(£)_i£a:(£+i)_2 ^ cp{k+\)> ca(k)-h the last alignment following from Lemma 1.2(iii) and 
(i). Alignment (8) with k + l replacing k then follows from (10) and Lemma 1.2(iii) with 
n = a{k). 
Case (d). a(k +1) = a(k) + 2 and /3{k +1) = a{k) +1 

Let uk+l = ukca(k) and let vk+l - vk. We show that (iii) holds with k + l replacing k. 
Clearly (10) with k + l replacing k follows from (10) as is and Lemma 1.2(iii). 

To prove (11) with k + l replacing k, we concatenate the following two alignments: (11) 
as is and caik+V) ZD c^k+l); ca(^, the last alignment following from Lemma L2(i). 

To prove (12) with k + l replacing k, we concatenate the following two alignments: (12) 
as is and £a(£)-ica(£+i)-2 ^ cp(k+\)> 1> ^ e last alignment following from Lemma 1.2(iii) and (i). 
As already noted, Lemmas 3.2 and 3.3 provide an inductive proof to Lemma 3.1. 

Lemma 3.4: 
(i) If cases (i) and (iii) of Lemma 3.1 do not hold for any k, then eventually (for all k>r) 

we are in case (a) of Lemma 3.3. 
(ii) In such a case, vk (resp. uk) is a proper left factor of vk+l (resp. uk+1). 

Proof: By the hypothesis of this lemma, Lemma 3.2, and Lemma 3.3, case (iii) of Lemma 
3.1 must hold for all k. By the hypothesis at the beginning of the section, a(k + T) = a(k) +1 for 
all k >r. Hence, of the four cases of Lemma 3.3, case (d) cannot hold and, clearly, cases (b) and 
(c) also do not hold. This proves assertion (i). 

Assertion (ii) follows from equation (13). 
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We are now in a position to state the main lemma. 

Lemma 3.5: Assume that the notations and assumptions stated at the beginning of this section 
hold. If s 31; u, then cps z> t; cpu. 

Proof: The proof of Lemma 3.5 follows directly from the proof of Lemmas 3.6 and 3.7 
below. 

Lemma 3.6: If, for some k, case (i) or (ii) of Lemma 3.1 holds, then Lemma 3.5 is true. 

Proof: Let 
S' = Ca(k+l)Ca(k+2) ~-> 

* ~ C/3(k+l)C/3(k+2) •••• 

Then 
S~Ca(l) ~-Ca(k)S'> 

t~Cfi{\) ••-Cfi(k)t'-

If (i) holds, then define u' so that s' ZD V\ U' . Note that u' exists because s' and V each have an 
infinite number of "a"s and "i"s. By concatenating this alignment with (5) and (6), respectively, 
we obtain 

siDt; uku' 
CpSZDt\ CpUkU'. 

Hence, ukuf = u by uniqueness of extracted strings, cpuku' = cpu and we are done. 
If (ii) holds, let ca^kyXsf 3 V\ u'. Then 

SZDt\ UkU' 

cpszDt;cpukuf 

with uku' = u, cpuku' = cpu and again we are done. 

Lemma 3.7: If cases (i) and (ii) of Lemma 3.1 do not hold for any k, then Lemma 3.5 is true, 

Proof: By Lemma 3.4(ii), both v = limv^ andz/0 = lim% are infinite strings. Taking the 
limits of (11) and (12) as A: goes to infinity, it is clear that 

sz)t; u0 

cpszDt;v. 

By uniqueness of extracted strings, we have u = u0. By Lemma 3.4 and (13), we have 
vk+2 ~ vk+lca(k+l)-3 ~ vkca(k)-3ca(k)-2 ~ vkca(k)-l ~ CpUk ( ^ - r)-

Consequently, v = lim vk+2 - lim cpuk = cp lim uk = cpu. 

Remark: Lemma 3.5 also holds when/? = 1. The proof for this case is straightforward and is left 
for the reader. 
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4 THE ALIGNMENTS xm ^xn; y^n 

Theorem 4.1: Either the two extracted strings ym^n and j w + l j W + 1 are equal or else they differ by 
the first letter only. Here, ymn Is defined by (2). 

Proof: Let xm - ca^ca^ ... and xn = c^c^2) ...be the canonical representations of xm and 
xn9 respectively. By Corollary 1.5(1), we have three cases to consider, according to the values of 
a(l) and /?(1). 

Case (i). a(l) = fi(l) 
Clearly y^ = ym+ln+l in this case. 

Case(li). a(l) = 2 and /?(1) = 1 
B>y Corollary 1.5(i), there are three subcases to consider: 
(a) If xm = c2s, xn - cf4 and s z> c2t; u, then ymn = au and y^i^+i = hu. 
(lb) If xm = c&s, xn = qc,fand5D/;M, thenymn = an and y ^ ^ = to. 
(c) If xw = c2c4s, xn = c&t and szDt\u, then j ^ -ac2n and ym+ln+l = c3u = hc2u by 

Lemma 3.5. 

Case(iii), a(l) = 1 and fi(l) = 2 
(a) If xw = qc25, JC„ = c2r and sz)t;u, theny^ = Zw and ym+^n+i = an. 
(b) If xw = qcjj, jcn = c2t and siDt;u9 thenymj„ = AJi/ andyw+lw+1 = c2n = abu by 

Lemma 3.5. 

This theorem, together with Theorems 2.4 and 2.5 (the modified Hofstadter's conjecture) 
imply the followiing result. 

Corollary 4.2: Let m and n be two nonnegative Integers. 

(a) lfm>n, then ymn is an infinite string; for m > n + 2 (resp. wi = w +1) the strings j w ? w and 
xm_„_2 (resp. ax) differ by at most the first letter. 

(b) Ifn> m, then ym^n Is a finite string with length n-m; the strings ymn and R(sn_m) differ 
by at most the first letter. 

The above corollary motivates determining the first letters of the strings ym^n (m&ri), xm_n_2 

(m > n + 2), and R(sn_m) (n>m), where m and n are nonnegative Integers. 

Lemma 43: 

(a) Let m > n + 2. Let m-n-2- EJ=if/^/+i be the Zeckendorf representation of m-n-2. 
Then the first letter of xm_n_2 Is an "a" or "6" depending on whether sx equals 1 or 0, respectively. 

(b) Let n > m. Let w - m -1 = ZJ=1 ̂ jFj+i ^e the Zeckendorf representation of n-m-I. 
Thee the first letter of R(sn_m) is an "a" or M#" depending on whether sx equals 1 or 0, respec-
tively, 

(c) Let m&n. Let w = EJ=1 £/̂ }+i and w = ZJ=1 £/^-+i ^e the Zeckendorf representations of 
m and riy respectively. Let k be the smallest positive Integer such that sk ^ 8k. Then the first 
letter of yWhn is an "a" Iff either ^ = 0 with k even or ^ = 1 with k odd. 
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Proof: (a) and (b) follow from [8, p. 85]. A similar proof holds for (c) after noting that, by 
Lemma 1.4, the following statements are true: 

If sk = 0 (resp. 1) and Sk = l (resp. 0), then xm = ucks (resp. uck+ls) and xn = uck+1t 
(resp. uckt) for some strings u, s, and t. 
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