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1. INTRODUCTION

Worth noticing is that the well-known Mobius inversion formulas in the elementary theory of
numbers (cf. e.g., [2] and [3]),

fm)=3 g(d) )]
dln
and
gm=3 f(@@un/d)=3. f(nld)ud), @)
din din

may be viewed precisely as a discrete analog of the following Newton-Leibniz fundamental for-
mulas
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FQxy,.nx)= [ [Gt, 1), .ty 3)
and
17} V74
G(xl"”’XS):-@_CIH;EC-S—F(XI’W’XS)’ (4)

wherein the summations of (1) and (2) are taken over all the divisors d of n, and G(¢,, ...,7,) is an
integrable function so that F(x,,...,x,) =0 when there is some x; =¢; (1<i<s). This will be
made clear in what follows.

Let us use the prime factorization forms for # and d, say n=p;" --- pj* and d = p}' --- p*, p,
being distinct primes, x; and ¢, being nonnegative integers with 0<¢, <x, (i =1,..., s), and replace
f(n) and g(d) of (1) by f((x)) = f(x,,..,x,) and g((z))=g(t,,...,1,), respectively. Then one
may rewrite (1) and (2) as multiple sums of the following:

SO x)= 3 gy, ty) ®
0<t;<x;
and
g(xl, [ER] xs) = z f(xi _tla LR xs _ts)lul(tl’ LR ts)’ (6)
0<t;<x;

where each summation is taken over all the integers #, (i=1,...,s) such that 0<7, <x;, and

w (@) = p, (1, ..., 1,) is defined by
w1 (1) 2{

(=D ifall <1,
0, ifthereisa iz, > 2.

Q)
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Evidently x,((¢)) = p(d) is just the classical Mobius function defined for positive integers d with
p(1) =1.(cf. [4]).

Now we introduce the backward difference operator é and its inverse /}"1 by the following:

Af()=f(x)-fx=1), A gx)= 3 g(0) ®
0<r<x
so that éé—l g(x) = g(x), é'l Af (x) = f(x), and we may denote é é"l = %_1 A =1 with If (x) =
f(x), where we assume that f(x) = g(x) =0 for x <0. Thus, (5) and (6) can be expressed as
FE)=47" 87" () ©)

and
g(()= A Af((), (10)

where it is always assumed that f((x)) = g((x)) =0 whenever there is some x;, <0 (1<i<s), s
being any positive integer.

Apparently, the reciprocal pair (9) <> (10) is just a discrete analog of the inverse relations
(3) © (4). This is what we claimed in the beginning of this section.

2. A GENERALIZATION OF (9) < (10)

Difference operators of higher orders may be defined inductively as follows:

A" =AAT A ’—A"lé‘(’"l), (r=2), A’=1I.

X X
Lemma 1: For any positive integer 7, we have L}’ z)}" = é_' A=1.

Proof: (By induction.) The case » = 1 has been noted previously. If it holds for the case
r =k > 1, then, for any given f(x),

ATATT S = A AAT AT f ()= AT TAT () = A" AT F (0 = £ (),
and, consequently, Ak“ A (+D — . Hence, A’ A" I holds for all » >1. Similarly, é" Ar=1
may also be verified by induction. O

In what follows, we always assume that every function f((x)) or g((x)) will vanish when-
ever there is some x; <0 (1<i<ys).

Lemma 2: For every given (r)=(r,...,1,) withr, 21, we have the following pair of reciprocal
relations:

f((x)):(flg"’f)g«x» (an
and
g((x)){f[g’f)f«x». (12)
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Proof: This is easily verified by repeated application of Lemma 1. In fact, the implication
(11) = (12) follows from the identity

(HA*J(HA'”):L (13)
=1 =1t
Similarly, we have (12) = (11). O
Evidently, the reciprocal pair (11) < (12) implies (1)< (2) with =1 (i=1,..., s), since
(1) and (2) are equivalent to (9) and (10), respectively.
3. AN EXPLICIT FORM

It is not difficult to find some explicit expressions for the right-hand sides of (11) and (12).
For the case s =1, write f((x)) = f(x). By mathematical induction, we easily obtain, for > 2,

8 f@= 3 (])re-n, (14)
0<t<r

A= e as)

a7 ge= 3 (T ew= 3 (37 e (16)

where the summation contained in (15) is taken over all the r-tuples of integers (,7,,...,7,_,)
such that 0<7<1 <---<t, , <x. Itis readily seen that, for each fixed 7 >0, the number of all
such r-tuples is given by (x— thre '), so that (16) follows from (15).

As may be verified, the explicit forms given by (14) and (16) can be used to produce another
proof of Lemma 1 and of Lemma 2, with the aid of the combinatorial identity

i(—l)f'(r.)(n_j+r—1)= 1 whenn=0,
) J r-1 0 whenn>1

Actually, this identity follows at once from comparing the coefficients of z” on both sides of the
product of the following expansions:

(-2 = ;}(—1)1(;)21', (1-2)" = E)(j :il— l)z”.

In what follows, we denote (x)—(?)=(x,—1,,...,x,—1,) with (x)=(x,,...,x,) and (f) =
(1, ...,1,) as before. Also, we use (0) < (?) < (x) to denote the conditions 0<7, <x, (i=1,...,5),
etc. As the right-hand sides of (11) and (12) consist of only repeated sums, we see that Lemma 2
together with (14) and (16) for r =7, x=x; (i=1,..., s) imply the following

Theorem: For any given (r)=(r,...,r,) with all 7, > 1, there hold the reciprocal relations

F(@)= 2 (@)@ -) 17)

(0)=(1)=(x)
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and

g =3 #pM)f()-®), (18)

(0)=(1)=(n)

where z,,((#)) and u(,)((t)) are defined by the following:

(D) = H( )( D", mn ()= H(’ :il ) (19)

Note that for the case (r)=(1,...,1) the function u,,((z)) becomes the ordinary Mobius
function, so that (17) and (18) constitute a generalized pair of Mobius inversions. Accordingly,
,u(_,l) ((t)) may be called the inverse Mobius function with given (r) =(r,,...,r,) as a parametric
vector. Moreover, it may be observed that the condition (0) < (¢) < (r) under the summation of
(18) may also be replaced by (0) < (¢) < (x) inasmuch as g((x)—(¢)) =0 whenever there is some
x; —1; <0. Consequently, (17) and (18) may be expressed as "convolutions":

F(x) = ugy * g((0), 8((x)) = sy * F (). (20)

Remark: Reversing the ordering relations in the summation process, one may find that there are
dual forms corresponding to (17) and (18). Suppose that (m)=(m,,...,m,) is a fixed s-tuple of
positive integers and that we are considering such functions f*((x)) and g*((x)) with the
property that f*((x)) = g*((x)) =0 whenever there is some x, >m, (1<i<s). Then the dual
forms of (17)—(18) are given by

)= 3 Hp-6)g (@) 1)
(X)=(6)<(m)
and
g*((X)) = Z /u(r) ((t) - (X))f*((t))’ (22)
(X)s()<(m)
where the summations are taken over all (f) such that x, <t, <m, (i=1,...,s). This reciprocal
pair (21) < (22) has certain applications to the Probability Theory of Arbitrary Events. For

instance, the case (r) =(1,...,1) may be used to yield a generalization of Poincaré's formula for
the calculus of probabilities (cf. [1]).

4. A CONSEQUENCE OF THE THEOREM

Returning now to the theory of numbers, let us denote by J(p|d) the highest power of the
prime number p that divides d. Thus, for d = p{' --- p, we have (p;|d)=1¢,. Also, we define
o)d) =0.

Notice that the functions f(n)= f(p; --- p[*) and g(d) = g(p;' --- p*) may be mapped to
the corresponding functions f((x)) and g((¢)), respectively. Thus, making use of the theorem
withr, =r (i=1, ..., 5), we easily get a pair of reciprocal relations, as follows,

f(n)=zg(§) v, (d) (23)

din
and
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gm=3 f(g) 1, (d), 24)
din

where v, (d) and u,(d) are defined by the following:

o @=TI(APD3 ), @ =T SO

pld pld

Obviously, the classical pair (1)—(2) is a particular case of (23)—(24) with r = 1. Moreover,
for the case » = 2, we have
def
vo(d)=[T((pld)+1)'= 8(d),
pid
where 6(d) stands for the divisor function that represents the number of divisors of d. Conse-
quently, (23)—(24) imply the following reciprocal pair as the second interesting case:

f(n):zg(g)a‘(d); 25)

din

g(n)=2f(§)u2<d). (26)
din

Surely (25)—(26) may be used to obtain various relations between special number sequences by
taking g(n) or f(n) to be special number-theoretic functions.
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