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We seek integers nl,...,nk, all > 2, for which 

Ylnj= * modw,. (1) 

for all i. Problems of this sort arise, for instance, in connection with the Chinese remainder 
theorem and structure theory for finite Abelian groups. Curiously, this system has received little 
attention compared to the system 

JJ«; =-lmod«; (2) 

(see [3], [5], [6], [7], [11]). System (2) has attracted interest because it is equivalent to the unit 
fraction equation 

k k 
]T 1 / «.: +1 / Y\ni ~m-> a n integer. (3) 
7 = 1 * = 1 

Especially for m -1 this problem is not only interesting in its own right in the field of Egyptian 
fractions, but also has proved to have application to the topology of singular points of algebraic 
surfaces [4]. In this paper we will apply what is known about system (2) to derive a large number 
of solutions to system (1). All solutions to (1) with 7 or fewer terms are given in the appendices, 
together with techniques for producing some 398 solutions with 8 terms and 1411 with 9 terms. 

Lemma 1: Let nl,...,nk be positive integers, relatively prime in pairs. Put 

X = lCn,t 7 = l£in,¥,.«,., 

and let D be the smallest positive residue of -7 mod X. 

(a) If X = 1 (resp. -1) mod D, then nv .-.9nk,nk+l satisfy (1) [resp. (2)] for nk+l = (X-l)/D 
[resp. (X + l)/D]. 
(b) If X -D admits a factor P = -X mod D, then nl9...9nk9nk+l,nk+2 satisfy (1) for nk+l = 
(X + P)/Dmdnk+2=(X + Q)/D,where Q = (X2-D)/P, 

Proof: For example, see [4], Proposition 12. (a) is immediate. For (b) we have 

(i) ( n f - , ^ K + i = ^"*+2+i» 

while for i <ky computing modulo nt gives 
(Hi) (ny # , »yK+ 1»t + 2 - YPQD-2 = (-D)(-D)D~2 = 1, 

where D~l is well defined mod nt since D and X are relatively prime. 

As a special case, if nv ..., nk satisfy (2), then D = 1. Thus, 
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Corollary 2: Let nv...,nk satisfy(2). Then 

(a) nx,..., nk,nk+l also satisfy (2) for nk+l = nf=1 w, +1, 

(b) nv..., nk9 nk+l satisfy (1) for nk+l = Ilf=1 nt -1, and 

fcj if P | n f = 1 ^ - 1 , t h e n ^ , . . . , ^ , ^ + 1 , ^ + 2 satisfy (1) for nk+1 =nf=1^ + P , ^ + 2 = 1 1 ^ ^ + g , 

wheree = (TI/t1w/
2-l)/P. 

Since all solutions to (1) are known for k < 7 (see [4]), as well as some 500 independent 
infinite sequences of solutions for increasingly large k (see [1]), part (b) gives a rich family of 
solutions to the congruences (1) obtained in this trivial way. To make use of part (c), we must 
be able to find factors of numbers of the form n / = 1 ^ - 1 . Immediately we have the factors 
n / = 1 w,- - 1 and n / = 1 nt, +1; hence, the following corollary. 

Corollary 3: Let nv...,nk satisfy (2). Then nv...,nk, nk+v nk+2 satisfy (1) for nk+1 = 2llf=1 nt - 1 , 
%+2 = 2 nf=1 nt +1 (as well as for nk+1 = nf=1 nt +1, ̂ + 2 = nf=1 ̂  + Ilf=1 /% -1). 

By finding further factors of U^ty - 1 and nf=1^; +1 for fixed nv...,nk satisfying (2), we 
can find farther solutions to (1) (see Appendix 2 below). But a more fruitful approach has proven 
to be as follows (cf. [12]). Choose a prime P, then try to find a solution nv...,nk to (2) for which 
P divides Ilf=1 nt -1 or Ilf=i nt + \. 

For P a positive integer, consider the relation "succeeds mod P" defined on the set Zp of 
integers mod P by y succeeds x mod P if j = x2 + x. We will write x < j if there is a finite 
sequence x0 = x,Xi,...,xi = y,£>l, such that xz- succeeds xt_x for / = 1,..., I (x < x is permissi-
ble), and we will write x<y\£x<y or x = y. Some properties of this relation are worked out in 
[1] in connection with equation (3). To give a particular example, which will be referred to later, 
for P = 19 the relation "succeeds" is represented by the following directed graph. 

9 17 16 8 -> 15 <- 10 13 7 

1 4 - > l - > 2 - » 6 - > 4 « - 1 2 * - 3 5 _> i i _> _i _> o <-
t J 

Proposition 4: Let nh...,nk satisfy (2), let P be a positive integer, and suppose that Ilf=i wf- < ± 1 
mod P. Put nk+l = Ilf=1 ty +1, and for ^ = 2,3,..., put w ^ = nl+i_x - nk+e_x +1. Then, for some 
£ > 1, nh..., %^_1? % ^ + P - 1 , nk+i + Q-1 satisfy (1), for appropriate choice of Q. 

Proof: First we note that Wnk + t = II/^+j/% +1. Thus nh..., nk+i satisfy (2) W. Further-
more , the products Ui<k+i nt - nk+M -1 satisfy the relation 

i<lc+t \i<k+£-l J\j<k+£-l 

that is, UiKk+tK} succeeds Il/^+^-i^ mod P. Since n f = i ^ ^ ± l , it follows that P divides 
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Ilf<k+£nt +1 for some I. By Lemma 1(c), then, nl7..., nk+i_x, nk+i + P-1, rc^ + Q-1 satisfy (1) 
for this choice of £ and for Q = ((nk+i -1)2 -1) / P. 

Remark: For a few small primes P, x < ± 1 mod P for every integer x mod P except x = 0. 
P = 2, 3, 5, 7, and 19 (see graph above), for instance, have this property. Thus, we have 

Corollary 5: LetP = 2, 3, 5, 7, or 19. Let nh...,nk satisfy (2), where P|w,V/. Then Ilf=1/% < 
±1 and we obtain a solution to (1) as in Proposition 4. 

Note: In connection with the prime P = 2, it should be mentioned that no solution to (1) or 
(2) is known with each nt odd. For P = 3, the shortest solution to (2) with each nt # 0 mod 3 is 
(2, 5, 7, 11, 17, 157, 961, 4398619). This leads to the solution (2, 5, 7, 11, 17, 157, 961, 
4398619, 8687184244716671, 75467170101653548887992820605569) to (1), where no term is 
divisible by 3. Indeed, applying Corollary 2(c) to appropriate factors of 

(2-5-7-ll-17-157-961-4398619)2--l = 3-719-2287-466201-2715929-12082314665809 

gives sixteen distinct solutions to (1) with 10 terms, none = 0 mod 3. However, there may be a 
shorter solution to (1) with this feature. 

We also observe that for P = 5 and P = 19, 1 < 1. Thus, P\Tlf*i nt -1 for infinitely many t, 
and we have an infinite sequence of solutions to (1) based on these primes. In general, 

Corollary 6: Let nu...,nk satisfy (2) and letP be an integer such that Ilf=1 nt < 1 and 1< 1. Then 
the procedure of Proposition 4 gives infinitely many solutions to (1). 

Proof: Let £0 be the smallest of the indices for which nf=
+/^ = 1 mod P, and let #% be the 

smallest positive integer for which we have a chain of successors 1 -> xt —» x2 —> > xmQ-\ -^ 1 
mod P. Then nf=

+/0+;>Mont = 1 mod P\/j = 1,2,..., each of which gives a solution to (1) by 
Lemma 2(c). 

Primes P < 1000 for which 1< 1 are 5, 19, 31, 41, 89, 409, 431, 461, 569, and 661. 

PRIMALITY TESTING AND FIBONACCI NUMBERS 

The methods of the previous section show that when nf=1 nt ± 1 have many factors for 
various solutions nh...,nk to (2), then we obtain many solutions to (1). It is equally interesting to 
inquire whether these numbers are prime. For instance, 2-3±l = {5,7}, 2-3-7±l = {41,43}, 
2-3-7.43-1807 + 1 = {3263441,3263443}, and 2-3-ll-23-31±l = {47057,47059} are four pairs 
of twin primes, where the indicated factors are solutions to (2). In the case of N = 11^ +1, pri-
mality tests of Fermat type are especially appropriate because we know many factors of N-l. 
Indeed, if there is an integer y for which yN~l = 1 mod N but yUj*inj £ 1 mod N V/', then N is 
"very probably prime" and we need only find the factors of each ni to complete the test. Some 
solutions to (2) for which nf=1^ +1 is prime are (2), (2, 3), (2, 3, 7), (2, 3, 11, 23, 31), (2, 3, 7, 
43, 1807), (2, 3, 7, 47, 395), (2, 3, 7, 47, 403, 19403), (2, 3, 7, 47, 415, 8111), (2, 3, 7, 55, 179, 
24323), (2, 3, 7, 43, 3263, 4051, 2558951), (2, 3, 7, 55, 179, 24323, 10057317271), (2, 3, 11, 
23, 31, 47423, 6114059), and (2, 3, 11, 25, 29, 1097, 2753). These are all such examples with 
k<l. 
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For n ^ . - l we will focus our attention on the sequence 2,3,7,43, ...9yk9...9 where yk -
Ui<kyj +1. By Corollary 2(a), Vk the first * terms of this sequence satisfy (2). Put xk = Tli^kyi = 
yk+l -1. Then xk = x\_x + xk_x and we have the succession relation 1 —> 2 —» 6 —> • • • —» xk_l —> 1 
modP for any divisorP o{xk~l. 

Lemma 7: 
(a) If m\k then (xw-1)1(^-1). 
(b) (i) (x,_1 + 2)|(x,~2)and(ii) if *|(*-1) then (x£-l)\(xk-2). 

Proof: 
(a) If m\k9 say k = md. Then mod (xm -1) we have the sequence of successions 1 -»2 -» 

j5^><.. -> x;w_1 -» 1, and after J repetitions of this loop we obtain xk = l mod (xm -1) and 
%cm-l)\{xk-l). 

(b) From ** = **_!+**_i, we have xk-2 = (xk_l + 2)(xk_l-l), hence assertion (i). Now 
assertion (ii) follows from (a). 

Corollary 8 [of (a)J: Ifk is composite, then so is xk - 1 . 

If k is prime, then xk-l may be prime and, again, since we know several factors of xk - 2 by 
(b) above, primality tests of Fermat type are available. A variation on this theme is to apply a 
Lucas-type test using the Fibonacci numbers. As a historical sidelight, in connection with the 
unit fraction equation (3), Fibonacci was the first to prove, in 1202, that if m,nl9...9nk is any 
collection of positive integers with Zf=1l/^ <w, then there exist t9nk+l9...9nk+i such that 
ZfJ"/ IInt = m (but not necessarily with nk+i = YLi<k+in^). 

Lemma 9: Let {x£} denote the sequence of positive integers defined by x0 = 1, xe = x\_x + x M 

for £>l, and let k be an odd prime. Put y = xk_l + l. Then V/ = 1,2,..., 
/ ^ j + i ^ mod ( x , - l ) , (4) 

where {F,} denotes the Fibonacci numbers, beginning with F0 = 0, JFj = 1. Furthermore, both y 
and 2y --1 are invertible in the ring Z(jc ^ of integers mod (xk -1) and Vi 

?,=&- (-yr)(2y -1)'1 mod (xk -1). (5) 
Proof: For the first assertion we use induction on i. If i = 1 the claim is just that 

y^Fiy+F0 = ly + 0. 

Now let i > 1 and assume the claim to be true for all smaller indices—in particular, that y'~x = 
F,_{y+Ft_2 mod (xk -1). From y - xk_x +1 and x\_x + xk_x = xk we have 

y2=x2
k_l + xk_l + xk_l + \ = xk+y = y + lmod(xk-l). (6) 

Thus, modulo (xk -1), 

y = y(rl)=m-iy+F,-i)s Z-iy2+%-& 
BF^iy + V + Ft^iF^+F^y + F^Fj + F^ 

as required. 
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As for invertibility of y, note that 

yxk_x = (x^ + l )x M = x2
k_x + xk_x = xk^l mod (xk -1), 

so that y~* exists in Z( ^ and is equal to x ^ . Furthermore, we have 

(-y-1)2 = 4-i - -**-i+1=(-.v-1)+1 mod (xk -1) . 
Since this is equation (6) above with -y~l in place ofy, the same inductive proof as above shows 
that also 

( - ^ ^ ( - J - V ^ - i m o d ^ - l ) . (7) 

Subtracting (7) from (6) now gives 

y-(-yyl^Ffr + y-^F&y-l) mod (x,-l) . 
To complete the proof of (5), we must show that 2y - 1 is invertible in Z^ ^—that is, that 2y-l 
and xk-l have no common factors. 

To see this, we compute 

(2y -1)2 = (2xM +1)2 = 4x2_! + 4xk_, +1 
-4x^+l = 4(x^-l) + 5, 

so any common divisor of 2 y - l and xk-l must also divide 5. But in the sequence {x£}°{L0 = 
{1,2,6,42,1806,...}, xe = 2 mod 5 for all odd t. In particular, xk - 1 = 1 mod 5, so 5 does not 
divide xk-l and we conclude that 2y-l and xk-l are mutually prime as claimed. Thus, 2y-l 
is invertible mod (xk -1) and the proof of equation (5) is complete. 

Remark: Another way to view this connection between the Fibonacci numbers and the 
powers of y is to note that j and (~y~l) are two solutions modulo (xk -1) to the quadratic equa-
tion Y2 - 7 - 1 = 0. That is, we may regard y as the "golden mean" j ; = (1 + ̂ 5) / 2 in £(* _i), 
where 2 is invertible since (xk -1) is odd and where V5 exists by quadratic reciprocity. Thus, 
equation (5) is the equivalent in Z^x ^ of the well-studied computational formula 

I+VSY fi-VsY Ft = 

Proposition 10: Let {xj, k, Y be as in Lemma 9. Then the sequence of Fibonacci numbers 
modulo (x^-1) repeats with some period X, where X divides the order of the multiplicative 
group Z*Xk-i) of invertible elements of Z ^ . ^ . If X = xk-2, then xk - 1 is prime and Z*Xk_x) is the 
cyclic group generated by y. 

Proof: In any case, since there are only (xk -1)2 pairs of integers mod (xk -1), the sequence 
{Ff} in Z(X y must repeat after at most (xk -1)2 terms. Let X be the smallest positive integer for 
which Fi+X = Fi for all /. By equation (4) of Lemma 9, then, y1+x = y1 V/. 

Conversely, if// is the order ofy in the group Z*Xk_^, then equation (5) of Lemma 9 shows 
that 

Fi+M = J? mod (x^ -1) for all /. 
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We conclude that fi = X and that the period of {î } is the same as the multiplicative order of y in 
Z*xk-i)- Since this order must divide the order of ZJX _x, by Lagrange's theorem, we have proved 
the first assertion. 

Finally, if X = xk - 2 , then y,y2,...,yXk~2 = 1 are all distinct in Z* 1)9 so |Z* ^1 = xi -2 and 
xk-l is coprime to each of 1,2, . . . , ^ - 2 . Thus, xk-l is prime as claimed, with Z* ^ the 
cyclic group consisting of powers of y. 

Remarks: As the proof shows, the condition X~xk-2 is equivalent to i^_2 = 0 and 
Fx i = 1 mod (xk -1), but (Fi9 Fi+l) # (0,1) mod (xk -1) V proper divisors i of xk - 2. An exam-
ple where these computations can be carried out by hand is k = 3, xfe-1 = 2-3-7-1 = 41,y = 7. 
The Fibonacci numbers (Fm, F41) = (0,1) but (F8, F9) and (F20, F21) # (0,1) mod 41, so Z41 con-
sists of powers of 7. Similarly, y = 1807 generates the multiplicative group of integers modulo 
the prime x5 - 1 = 3263441. 

APPLICATION TO ALGEBRAIC SURFACES 

Our interest was first attracted to number theoretic problems of this type because of the fol-
lowing considerations from the topology of complex surfaces. Let S be an algebraic surface over 
C with a normal isolated singular point P. Let / : S -» S be the minimal normal resolution of sin-
gularities with exceptional curve C = /~1(P) = UJ1iC/, where each Q is nonsingular and meets 
Cj, if at all, transversally in a single point Vj *i. C is represented by its dual weighted intersec-
tion graph F, in which each vertex vi corresponds to a component Q, with edges {v7, v^} when-
ever Q meets Cj, and with positive integer weight wt = -Cf assigned to the vertex vi9 where Cf 
is the self-intersection number (the Chern class of the normal line bundle of the embedding of Q 
in S ). If each Q is rational, then F completely determines the topology of a neighborhood U of 
the singular point in S. In particular, if F has no cycles then U is the cone on a smooth real three-
manifold M whose fundamental group TT1 is generated by v1?..., vn with relations Ily=iV~( '" j>) = 
1 VJ and vtVj = vjvt if Q meets Cj [9]. From this, it follows that the first homology group of Mis 
the Abelian group with these generators and relations, with order the determinant of the weighted 
intersection matrix of T, written |F|. 

This determinant, in turn, can be calculated very quickly using techniques of graph theory in 
linear algebra [8]. In particular, if F is any weighted tree, v0 a vertex of F of weight w0, we have 
the following "expansion by a vertex" formula ([2], eq. 2.13). Let vly...,vk be the vertices of F 
that meet v0, denote by T) the component of F^-{v0} which contains v/? and put T/ = Ti -{v,.}. 
Then 

ir|=^oflir/l-iir;inirJl. (8) 
/=1 /=1 j*i 

A recurring problem in two-dimensional singularity theory is to classify or to find examples of 
complex surface singularities whose local fundamental group nx satisfies some standard group 
theoretic criterion, such as being solvable [13] or nilpotent [10]. By the preceding discussion, nx 

is perfect (generated by commutators) if and only if F is acyclic, each exceptional component Q 
is rational, and |T|= 1. The results of this paper give a large family of such "perfect" singularities. 
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A weighted graph T will be called standard star-shaped if it consists of linear arms r ^ . . . , ^ , 
each vertex having weight 2, joined at a terminal vertex vn to a common central vertex v0 of 
weight w0 (see Figure 1). 

A 7 

FIGURE 1 

Theorem 11: Let P eS be an isolated complex surface singularity with minimal normal resolu-
tion / :S ->S. Suppose that each component of the exceptional curve is rational and that the 
weighted dual intersection graph T of f~l(P) is standard star-shaped with k arms as pictured in 
Figure 1. For / = !,...,£ put nt = ii +1, where lt is the length of the Ith arm of F. Then the local 
fundamental group ^ of P in S is perfect if and only if nh...,nk satisfy the system of congruences 
(OwithCE^n^^-O/ati^-^-^o-

Proof: The linear graph ^ on ^ vertices with all weights 2 has determinant £ + 1. Hence, for 
the graph T of Figure 1, formula (8) above becomes 

iri=w0nn-t(/%-i)n»y=(wo-*)fi'%+inwy 
Thus, | r | = l ifandonlyif Zf^IIy^/iy = (*-w0)nfaBl/% + l. 

Remarks: The best-studied example is the rational double point Es, corresponding to the 
solution (2, 3, 5), whose local fundamental group is the perfect extension of degree 2 of the alter-
nating group on 5 letters. In general, in connection with the central weight w0 it should be noted 
that no solution to (1) is known for which the integer m - (Zf=i Fly*, «y -1) / Ilf=i nt is larger than 
1. 

To aid our understanding of these complex surfaces, we can model their real analogs as 
follows. Let (nu...,nk) be a solution to the congruence (1). Denote by A^ the "Moebius band 
with nt twists," and attach the Mt to a central Moebius band with 1 twist by the technique of 
plumbing. The surface under study is then the cone on the boundary of this object. The cone is a 
smooth two-dimensional real manifold with a singular point at the tip of the cone. See Figure 2, 
where the construction is illustrated for the solution (2, 3, 5). 
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DOOODG 

FIGURE 2 

Appendix 1: The complete set of solutions to the congruence system n ^ , « ; = 1 mod (n,) with 
7 or fewer terms (equivalently, the complete set of solutions to the unit fraction equation 

k = 3: 2,3,5 

k = 4: 2,3,7,41 
2,3,11,13 

k = 5: 2,3,7,43,1805 
2,3,7,83,85 
2,3,11,17,59 

k = 6: 2,3,7,43,1807,3263441 
2,3,7,43,1811,654133 
2,3,7,43,1819,252701 
2,3,7,43,1825,173471 
2,3,7,43,1871,51985 
2,3,7,43,1901,36139 
2,3,7,43,1945,25271 
2,3,7,43,2053,15011 
2,3,7,43,2167,10841 
2,3,7,43,2501,6499 
2,3,7,43,3041,4447 
2,3,7,43,3611,3613 
2,3,7,47,395,779729 
2,3,7,47,481,2203 
2,3,7,53,271,799 
2,3,7,71,103,61429 
2,3,11,23,31,47057 

k = 7: 2,3,7,43,1807,3263443,10650056950805 
2,3,7,43,1807,6526883,6526885 
2,3,7,43,1823,193667,637617223445 
2,3,7,43,1907,34165,17766223 
2,3,7,43,1907,43115,163073 
2,3,7,43,2159,11047,98567401 
2,3,7,43,2533,7807,32435 
2,3,7,43,3307,3979,642279641 
2,3,7,47,395,779731,607979652629 
2,3,7,47,395,779819,6832003021 
2,3,7,47,3 95,788491,701757789 
2,3,7,47,395,1559459,1559461 
2,3,7,47,401,25535,1837531099 
2,3,7,47,403,19403,15435513365 
2,3,7,47,415,8111,6646612309 
2,3,7,47,449,3299,379591 
2,3,7,47,583,1223,140479765 
2,3,7,55,179,24323,10057317269 
2,3,7,59,163,1381,775807 
2,3,7,71,103,61441,319853515 
2,3,7,71,103,61477,79005919 
2,3,7,71,103,61559,29133437 
2,3,7,71,103,61955,7238201 
2,3,7,71,103,62857,2704339 
2,3,7,71,103,67213,713863 
2,3,11,23,31,47059,2214502421 
2,3,11,23,31,94115,94117 
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Appendix 2: Prime factorization of nf= 1w;±l for all solutions %... , /% of the system of con-
gruences (2) n ,* , rij = - 1 modnt for k = 6 and 7. These lists provide 380 solutions to (1) H ^ rij 
= 1 mod rij with 8 terms and 1368 solutions with 9 terms, by applying Corollary 2(c). Together 
with solutions obtained by applying Corollary 2(b) to known solutions of 92), this gives a total of 
398 solutions to (1) for k = 8 and 1411 solutions for k = 9. 

(n, ...,**) 
2,3,7,43. 
2,3,7,43, 
2,3,7,47, 
2,3,7,47, 
2,3,7,47, 
2,3,7,47, 
2,3,7,55. 
2,3,11,23 

1807,3263443 
1823,193667 
395,779731 
403,19403 
415,8111 
583,1223 
179,24323 
31,47059 

k=6 

5.41.89.5119-114031 
5-36931-3453019 
31-71-5939-46511 
5-101-30565373 
251-269-98411 
5-29-241-40277 
9181-1095449 
19-116552759 

Iff-iq+1 
547-607.1033-31051 
37-449-38380619 
13-46767665587 
15435513367 (prime) 
6646612311 (prime) 
1407479767 (prime) 
67-103-1457371 
19-116552759 

(%- - ,^ ) 

2,3,7,43,1807,3263443,10650056950807 
2,3,7,43,1807,3263447,213001400915 
2,3,7,43,1807,3263591,71480133827 
2,3,7,43,1807,3264187,14298637519 
2,3,7,43,1823,193667,637617223447 
2,3,7,43,3262,4051,2558951 
2,3,7,43,3559,3667,33816127 
2,3,7,47,395,779731,607979652631 
2,3,7,47,395,779831,6020372531 
2,3,7,47,403,19403,15435513367 
2,3,7,47,415,8111,6646612311 
2,3,7,47,583,1223,1407479767 
2,3,7,55,179,24323,10057317271 
2,3,7,67,187,283,334651 
2,3,11,17,101,149,3109 
2,3,11,23,31,47059,2214502423 
2,3,11,23,31,47063,442938131 
2,3,11,23,31,47095,59897203 
2,3,11,23,31,47131,30382063 
2,3,11,23,31,47243,12017087 
2,3,11,23,31,47423,6114059 
2,3,11,23,31,49759,866923 
2,3,11,23,31,60563,211031 
2,3,11,25,29,1097,2753 
2,3,11,31,35,67,369067 
2,3,13,25,29,67,2981 

k=7 

15541-38780342479-188197244219 
17-240131-5556966386354188067 
7477 - 2907138253•35023852553 
5-519-19-19267-875960006253011 
5849-26926271-2581441251359 
37-59-27983710363519 
5-17-353-26563596744757 
36963925801270344569529 (prime) 
191- 4241•7621- 592999740779 
239-419-2379196062425981 
31-31-71-829-15629-49942679 
1831-11161-96937735031 
29-2311-5881-256634582371 
733-67989255821 
61819-849179 
5-4789-1970279-103946471 
37-127-208761638439227 
19-928771-7522333121 
43-1193-2311-8429-67433 
46062647-579990991 
5-59-178681-258852119 
5-405990274405861 
2017-298181849369 
7-9601-2150207 
17-23833-4370449 
2113-5345273 

nii/%+1 
29881-67003-9119521-6212157481 
362464859 - 62584820727317729 
5-1890875263-80523769616513 
596059•255538497028486753 
10243-32491-1221602263409851 
61088439723561979 (prime) 
577-36857-37478716883 
14479-117594511-217096324699 
1•332793947873448506321 
1021 •233354625746719063 
19-409-5557-1022402698813 
127•38977•400195490437 
101149630679497570171 (prime) 
5-139-419-479-357281 
13-4038107431 
6961-1513457-4590859291 
5-5-7-5605548223005301 
7-7-109-566857-43844863 
5-5-3083-874266518009 
17321-23293-66217343 
13644326865136507 (prime) 
331-6132783601297 
5-5-7-109-31529897257 
144508961851 (prime) 
1553-1140203147 
4783-2361397 
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